1. The sGC Activator Runcaciguat Has Kidney Protective Effects and Prevents a Decline of Kidney Function in ZSF1 Rats.
- Author
-
Kraehling, Jan R., Benardeau, Agnes, Schomber, Tibor, Popp, Laura, Vienenkoetter, Julia, Ellinger-Ziegelbauer, Heidrun, Pavkovic, Mira, Hartmann, Elke, Siudak, Krystyna, Freyberger, Alexius, Hagelschuer, Ina, Mathar, Ilka, Hueser, Joerg, Hahn, Michael G., Geiss, Volker, Eitner, Frank, and Sandner, Peter
- Subjects
KIDNEY physiology ,GENE expression profiling ,KIDNEYS ,CHRONIC kidney failure ,BLOOD sugar ,RATS ,HYPERGLYCEMIA - Abstract
Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by −19%, −54%, and −70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by −8%, −34%, and −76%, triglycerides by −42%, −55%, and −71%, and cholesterol by −16%, −17%, and −34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061). [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF