3 results on '"González-Partida, Eduardo"'
Search Results
2. MVT-Like Fluorite Deposits and Oligocene Magmatic-Hydrothermal Fluorite–Be–U–Mo–P–V Overprints in Northern Coahuila, Mexico.
- Author
-
Camprubí, Antoni, González-Partida, Eduardo, Richard, Antonin, Boiron, Marie-Christine, González-Ruiz, Luis E., Aguilar-Ramírez, César F., Fuentes-Guzmán, Edith, González-Ruiz, Daniel, and Legouix, Claire
- Subjects
- *
FLUORITE , *METALLOGENIC provinces , *HYDROTHERMAL synthesis , *SKARN , *SALINITY - Abstract
The formation of most fluorite deposits in northern Coahuila (NE Mexico) is explained by MVT models, and is a part of the metallogenic province of northeastern Mexico. However, fluorite skarn deposits also occur in the same region, and there is evidence for late hydrothermal manifestations with no clear origin and evolution. The latter are the main focus of this study; in particular, F–Be–U–Mo–V–P stringers in the Aguachile-Cuatro Palmas area that overprint preexisting fluorite mantos. The region experienced the emplacement of several intrusives during the Eocene and the Oligocene that are collectively grouped into the East Mexico Alkaline Province (EMAP) and postdate MVT-like deposits. Some of these intrusives have associated skarn deposits; most of them are polymetallic, but the unusual El Pilote deposit contains fluorite mineralisation that was remobilised from MVT-like deposits. The formation of the Aguachile deposit (and, collectively, part of the Cuatro Palmas deposit) has been attributed to a shallow retrograde skarn model. The Cuatro Palmas and Las Alicias fluorite deposits consist of MVT-like deposits overprinted by late hydrothermal fluorite mineralisation rich in Be–U–Mo–V–P, and the Aguachile deposit consists entirely of the latter type. The systematic fluid inclusion study of MVT-like, skarn, and late hydrothermal fluorite deposits reveals a very different distribution of temperature and salinity data that allows the discrimination of mineralising fluids for the type of deposit. MVT-like deposits were formed by fluids with temperatures of homogenisation that range between 50 °C and 152 °C and salinities between 5 and 15.5 wt.% NaCl equivalent. The El Pilote fluorite skarn was formed by fluids with temperatures of homogenisation that range between 78 °C and 394 °C and salinities between 5 and 34 wt.% NaCl equivalent, and include CaCl2-rich brines with salinities that range between 24.5 and 29.1 wt.% CaCl2. Late shallow fluorite–Be–U–Mo–V–P hydrothermal deposits were formed by fluids with temperatures of homogenisation that range between 70 °C and 180 °C and salinities between 0.9 and 3.4 wt.% NaCl equivalent; the sole exception to the above is the La Fácil deposit, with salinities that range between 7.9 and 8.8 wt.% NaCl equivalent. While temperatures of homogenisation are similar between MVT-like and late hydrothermal deposits, and both even have hydrocarbon-rich fluid inclusion associations, the salinity of late deposits is similar to that of retrograde skarn fluids, although further diluted. However, homogenisation temperatures tend to be higher in late hydrothermal than in MVT-like deposits, thus making them more similar to retrograde skarn fluids. Although this characteristic cannot solely establish a genetic link between a retrograde skarn model and late hydrothermal deposits in the study area, the characteristics of fluids associated with the latter separate these deposits from those ascribed to an MVT-like model. Assuming that mineralising fluids for late fluorite–Be–U–Mo–V–P hydrothermal deposits may correspond to a retrograde skarn (or "epithermal") deposit, the source for fluorine may be either from (A) the dissolution of earlier formed MVT-like deposits, (B) the entrainment of remaining F-rich basinal brines, or (C) hydrothermal fluids exsolved from highly evolved magmas. Possibilities A and B are feasible due to a hypothetical situation similar to the El Pilote skarn, and due to the occurrence of hydrocarbon-rich fluid inclusions at the La Fácil deposit. Possibility C is feasible because intrusive bodies related to highly evolved magmas would have provided other highly lithophile elements like Be, U and Mo upon the exsolution of their hydrothermal fluids. Such intrusive bodies occur in both study areas, and are particularly conspicuous at the Aguachile collapse structure. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits.
- Author
-
González-Partida, Eduardo, Camprubí, Antoni, Carrillo-Chávez, Alejandro, Díaz-Carreño, Erik H., González-Ruiz, Luis E., Farfán-Panamá, José L., Cienfuegos-Alvarado, Edith, Morales-Puente, Pedro, and Vázquez-Ramírez, Juan T.
- Subjects
- *
FLUORITE , *SALINITY , *LIMESTONE , *HYDROTHERMAL alteration , *HYDROTHERMAL deposits - Abstract
The origin of the mineralization at the world-class Las Cuevas (the largest single fluorite deposit in the world) has been historically disputed, essentially between skarn-related and Mississippi Valley Type (MVT) models. A systematic study of fluid inclusions in these deposits revealed that they were formed by low temperature (49 to 177 °C) and low salinity (0 to 1.9 wt % NaCl equiv) fluids. The obtained δ13C (between −2.39 and 0.20‰ VPDB) and δ18O (between −14.03 and −7.37‰ VPDB) data from local host limestones agreed with regionally representative values in the literature. The obtained δ13C (between −15.60 and −12.99‰ VPDB) and δ18O (between −5.56 and −1.84‰ VPDB) data from hydrothermal calcite associated with fluorite mineralization indicated that the isotopic composition of hydrothermal fluids initially reflected buffering by the host rocks, and then recorded the interaction between meteoric water and basinal brines. It is likely that such processes occurred with concurrent maturation of organic matter, and that the obtained compositions may also have recorded a thermal effect on the local limestones. Halogen geochemical studies in inclusion fluids showed a distribution that suggests that solutes in mineralizing fluids were due to scavenging of Na+ and Cl− through water–rock interaction or halite dissolution, and that secondary sources would have been the evaporation or infiltration of seawater. The basinal brines with which the formation of these deposits was associated were massively diluted by deeply evolved meteoric water, thus making a significant fluorine input by basinal brines unlikely. Fluorine would have been provided by local groundwater through its interaction with Oligocene topaz rhyolites and other F-rich volcanic and hypabyssal rocks. Such a possibility is supported by present-day groundwater, which presents a regional endemic case of fluorosis. The precipitation of fluorite is possible at low temperatures (at which the solubility of this mineral is very low) by means of chemical reactions and physical interactions among very diluted F-poor basinal brines, F-rich groundwater, and host carbonate rocks. The latter systematically experienced hydrothermal karstification, which would have provided Ca2+ for reaction with F− and resulted in the precipitation of fluorite. This scenario stands for a depositional model that recalls those proposed for MVT and associated industrial mineral deposits, but is distinct from common models with regard to the primal source for fluorine and the extremely low salinities of inclusion fluids. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.