1. Mitoferrin-1 Promotes Proliferation and Abrogates Protein Oxidation via the Glutathione Pathway in Glioblastoma.
- Author
-
Ali, Md Yousuf, Griguer, Corinne E., Flor, Susanne, and Oliva, Claudia R.
- Subjects
GLIOBLASTOMA multiforme ,GLUTATHIONE ,IRON ,GENE expression ,IRON metabolism ,METHYLGUANINE - Abstract
Median overall survival is very low in patients with glioblastoma (GBM), largely because these tumors become resistant to therapy. Recently, we found that a decrease in the cytosolic labile iron pool underlies the acquisition of radioresistance. Both cytosolic and mitochondrial iron are important for regulating ROS production, which largely facilitates tumor progression and response to therapy. Here, we investigated the role of the mitochondrial iron transporters mitoferrin-1 (MFRN1) and mitoferrin-2 (MFRN2) in GBM progression. Analysis of The Cancer Genome Atlas database revealed upregulation of MFRN1 mRNA and downregulation of MFRN2 mRNA in GBM tumor tissue compared with non-GBM tissue, yet only the tumor expression level of MFRN1 mRNA negatively correlated with overall survival in patients. Overexpression of MFRN1 in glioma cells significantly increased the level of mitochondrial iron, enhanced the proliferation rate and anchorage-independent growth of these cells, and significantly decreased mouse survival in an orthotopic model of glioma. Finally, MFRN1 overexpression stimulated the upregulation of glutathione, which protected glioma cells from 4-hydroxynonenal-induced protein damage. Overall, these results demonstrate a mechanistic link between MFRN1-mediated mitochondrial iron metabolism and GBM progression. Manipulation of MFRN1 may provide a new therapeutic strategy for improving clinical outcomes in patients with GBM. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF