1. Theoretical Study on Photocatalytic Reduction of CO 2 on Anatase/Rutile Mixed-Phase TiO 2.
- Author
-
Li, Jieqiong, Wei, Shiyu, Dong, Ying, Zhang, Yongya, and Wang, Li
- Subjects
- *
CARBON dioxide , *ELECTRON traps , *DENSITY functional theory , *PHOTOREDUCTION , *ABSORPTION coefficients - Abstract
The construction of anatase/rutile heterojunctions in TiO2 is an effective way of improving the CO2 photoreduction activity. Yet, the origin of the superior photocatalytic performance is still unclear. To solve this issue, the band edges between anatase and rutile phases were theoretically determined based on the three-phase atomic model of (112)A/II/(101)R, and simultaneously the CO2 reduction processes were meticulously investigated. Our calculations show that photogenerated holes can move readily from anatase to rutile via the thin intermediated II phase, while photoelectrons flowing in the opposite direction may be impeded due to the electron trapping sites at the II phase. However, the large potential drop across the anatase/rutile interface and the strong built-in electric field can provide an effective driving force for photoelectrons' migration to anatase. In addition, the II phase can better enhance the solar light utilization of (112)A/(100)II, including a wide light response range and an intensive optical absorption coefficient. Meanwhile, the mixed-phase TiO2 possesses negligible hydrogenation energy (CO2 to COOH*) and lower rate-limiting energy (HCOOH* to HCO*), which greatly facilitate CH3OH generation. The efficient charge separation, strengthened light absorption, and facile CO2 reduction successfully demonstrate that the anatase/rutile mixed-phase TiO2 is an efficient photocatalyst utilized for CO2 conversion. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF