1. Anti-Inflammatory Effect of Ethanol Extract from Hibiscus cannabinus L. Flower in Diesel Particulate Matter-Stimulated HaCaT Cells.
- Author
-
Han, Ji-Ye, Kim, Shin-Kyeom, Lim, Do-Won, Kwon, Osoung, Choi, Yu-Rim, Kang, Chan-Ho, Lee, Yun Jung, and Lee, Young-Mi
- Abstract
Background/Objectives: Diesel Particulate Matter (DPM) is a very small particulate matter originating from cities, factories, and the use of fossil fuels in diesel vehicles. When DPM permeates the skin, it causes inflammation, leading to severe atopic dermatitis. Hibiscus cannabinus L. (Kenaf) seeds and leaves possess various beneficial properties, including anti-coagulation, antioxidant, and anti-inflammation effects. In this study, we investigated the anti-inflammatory effects of an ethanol extract of Hibiscus cannabinus L. flower (HCFE) in HaCaT cells stimulated with 100 μg/mL of DPM. Methods: The anthocyanin content of HCFE was analyzed, and its antioxidant capacity was investigated using the DPPH assay. After inducing inflammation with 100 ug/mL of DPM, the cytotoxicity of HCFE 25, 50, and 100 ug/mL was measured, and the inhibitory effect of HCFE on inflammatory mediators was evaluated. Results: Anthocyanin and myricetin-3-O-glucoside were present in HCFE and showed high antioxidant capacity. In addition, HCFE decreased the mRNA expression of inflammatory cytokines and chemokines such as IL-1β, IL-4, IL-6, IL-8, IL-13, and MCP-1, and significantly reduced the gene expression of CXCL10, CCL5, CCL17, and CCL22, which are known to increase in atopic dermatitis lesions. Furthermore, HCFE reduced intracellular reactive oxygen species (ROS) production, and down-regulated the activation of NF-κB, MAPKs. Inhibition of the NLRP-3 inflammasome was observed in DPM-stimulated HaCaT cells. In addition, the restoration of filaggrin and involucrin, skin barrier proteins destroyed by DPM exposure, was confirmed. Conclusions: These data suggest that HCFE could be used to prevent and improve skin inflammation and atopic dermatitis through the regulation of inflammatory mediators and the inhibition of skin water loss. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF