1. Critical Role of the Transcription Factor AKNA in T-Cell Activation: An Integrative Bioinformatics Approach.
- Author
-
Ramírez-González A, Ávila-López P, Bahena-Román M, Contreras-Ochoa CO, Lagunas-Martínez A, Langley E, Manzo-Merino J, Madrid-Marina V, and Torres-Poveda K
- Subjects
- Humans, Interleukin-2 metabolism, Nuclear Proteins genetics, T-Lymphocytes metabolism, Computational Biology, Transcription Factors metabolism, DNA-Binding Proteins metabolism
- Abstract
The human akna gene encodes an AT-hook transcription factor, the expression of which is involved in various cellular processes. The goal of this study was to identify potential AKNA binding sites in genes that participate in T-cell activation and validate selected genes. Here we analyzed ChIP-seq and microarray assays to determine AKNA-binding motifs and the cellular process altered by AKNA in T-cell lymphocytes. In addition, we performed a validation analysis by RT-qPCR to assess AKNA's role in promoting IL-2 and CD80 expression. We found five AT-rich motifs that are potential candidates as AKNA response elements. We identified these AT-rich motifs in promoter regions of more than a thousand genes in activated T-cells, and demonstrated that AKNA induces the expression of genes involved in helper T-cell activation, such as IL-2 . The genomic enrichment and prediction of AT-rich motif analyses demonstrated that AKNA is a transcription factor that can potentially modulate gene expression by recognizing AT-rich motifs in a plethora of genes that are involved in different molecular pathways and processes. Among the cellular processes activated by AT-rich genes, we found inflammatory pathways potentially regulated by AKNA, suggesting AKNA is acting as a master regulator during T-cell activation.
- Published
- 2023
- Full Text
- View/download PDF