1. Automated Multi-Class Facial Syndrome Classification Using Transfer Learning Techniques.
- Author
-
Sherif, Fayroz F., Tawfik, Nahed, Mousa, Doaa, Abdallah, Mohamed S., and Cho, Young-Im
- Subjects
CONVOLUTIONAL neural networks ,WILLIAMS syndrome ,TURNER'S syndrome ,GENETIC disorders ,NOONAN syndrome ,DEEP learning - Abstract
Genetic disorders affect over 6% of the global population and pose substantial obstacles to healthcare systems. Early identification of these rare facial genetic disorders is essential for managing related medical complexities and health issues. Many people consider the existing screening techniques inadequate, often leading to a diagnosis several years after birth. This study evaluated the efficacy of deep learning-based classifier models for accurately recognizing dysmorphic characteristics using facial photos. This study proposes a multi-class facial syndrome classification framework that encompasses a unique combination of diseases not previously examined together. The study focused on distinguishing between individuals with four specific genetic disorders (Down syndrome, Noonan syndrome, Turner syndrome, and Williams syndrome) and healthy controls. We investigated how well fine-tuning a few well-known convolutional neural network (CNN)-based pre-trained models—including VGG16, ResNet-50, ResNet152, and VGG-Face—worked for the multi-class facial syndrome classification task. We obtained the most encouraging results by adjusting the VGG-Face model. The proposed fine-tuned VGG-Face model not only demonstrated the best performance in this study, but it also performed better than other state-of-the-art pre-trained CNN models for the multi-class facial syndrome classification task. The fine-tuned model achieved both accuracy and an F1-Score of 90%, indicating significant progress in accurately detecting the specified genetic disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF