1. Enhanced caspase activity contributes to aortic wall remodeling and early aneurysm development in a murine model of Marfan syndrome.
- Author
-
Emrich FC, Okamura H, Dalal AR, Penov K, Merk DR, Raaz U, Hennigs JK, Chin JT, Miller MO, Pedroza AJ, Craig JK, Koyano TK, Blankenberg FG, Connolly AJ, Mohr FW, Alvira CM, Rabinovitch M, and Fischbein MP
- Subjects
- Animals, Aorta enzymology, Aortic Aneurysm diagnosis, Aortic Aneurysm enzymology, Aortic Aneurysm genetics, Aortic Aneurysm prevention & control, Autoradiography, Caspase Inhibitors pharmacology, Cells, Cultured, Disease Models, Animal, Disease Progression, Elastin metabolism, Female, Fibrillin-1, Fibrillins, Fluorescent Antibody Technique, Male, Marfan Syndrome genetics, Mice, Inbred C57BL, Mice, Mutant Strains, Microfilament Proteins genetics, Microscopy, Electron, Scanning, Muscle, Smooth, Vascular diagnostic imaging, Muscle, Smooth, Vascular drug effects, Muscle, Smooth, Vascular ultrastructure, Mutation, Myocytes, Smooth Muscle drug effects, Myocytes, Smooth Muscle ultrastructure, Time Factors, Tomography, Emission-Computed, Single-Photon, Aortic Aneurysm etiology, Apoptosis drug effects, Caspases metabolism, Cell Membrane enzymology, Marfan Syndrome complications, Muscle, Smooth, Vascular enzymology, Myocytes, Smooth Muscle enzymology, Vascular Remodeling drug effects
- Abstract
Objective: Rupture and dissection of aortic root aneurysms remain the leading causes of death in patients with the Marfan syndrome, a hereditary connective tissue disorder that affects 1 in 5000 individuals worldwide. In the present study, we use a Marfan mouse model (Fbn1(C1039G/+)) to investigate the biological importance of apoptosis during aneurysm development in Marfan syndrome., Approach and Results: Using in vivo single-photon emission computed tomographic-imaging and ex vivo autoradiography for Tc99m-annexin, we discovered increased apoptosis in the Fbn1(C1039G/+) ascending aorta during early aneurysm development peaking at 4 weeks. Immunofluorescence colocalization studies identified smooth muscle cells (SMCs) as the apoptotic cell population. As biological proof of concept that early aortic wall apoptosis plays a role in aneurysm development in Marfan syndrome, Fbn1(C1039G/+) mice were treated daily from 2 to 6 weeks with either (1) a pan-caspase inhibitor, Q-VD-OPh (20 mg/kg), or (2) vehicle control intraperitoneally. Q-VD-OPh treatment led to a significant reduction in aneurysm size and decreased extracellular matrix degradation in the aortic wall compared with control mice. In vitro studies using Fbn1(C1039G/+) ascending SMCs showed that apoptotic SMCs have increased elastolytic potential compared with viable cells, mostly because of caspase activity. Moreover, in vitro (1) cell membrane isolation, (2) immunofluorescence staining, and (3) scanning electron microscopy studies illustrate that caspases are expressed on the exterior cell surface of apoptotic SMCs., Conclusions: Caspase inhibition attenuates aneurysm development in an Fbn1(C1039G/+) Marfan mouse model. Mechanistically, during apoptosis, caspases are expressed on the cell surface of SMCs and likely contribute to elastin degradation and aneurysm development in Marfan syndrome., (© 2014 American Heart Association, Inc.)
- Published
- 2015
- Full Text
- View/download PDF