7 results on '"Mastantuono, E"'
Search Results
2. Genetic modifiers for the long-QT syndrome: How important Is the role of variants in the 3' untranslated region of KCNQ1?
- Author
-
Crotti, L., Lahtinen, A.M., Spazzolini, C., Mastantuono, E., Monti, M.C., Morassutto, C., Parati, G., Heradien, M., Goosen, A., Lichtner, P., Meitinger, T., Brink, P.A., Kontula, K., Swan, H., and Schwartz, P.J.
- Subjects
Kcnq1 Potassium Channel ,Arrhythmias ,Genes, Modifier ,Long-qt Syndrome ,Untranslated Region - Abstract
BACKGROUND: Long-QT syndrome is an inherited cardiac channelopathy characterized by delayed repolarization, risk of life-threatening arrhythmia, and significant clinical variability even within families. Three single-nucleotide polymorphisms (SNPs) in the 3' untranslated region of KCNQ1 were recently suggested to be associated with suppressed gene expression and hence decreased disease severity when located on the same haplotype with a disease-causing KCNQ1 mutation. We sought to replicate this finding in a larger and a genetically more homogeneous population of KCNQ1 mutation carriers. METHODS AND RESULTS: The 3 SNPs (rs2519184, rs8234, and rs10798) were genotyped in a total of 747 KCNQ1 mutation carriers with A341V, G589D, or IVS7-2A>G mutation. The SNP haplotypes were assigned based on family trees. The SNP allele frequencies and clinical severity differed between the 3 mutation groups. The different SNP haplotypes were neither associated with heart rate-corrected QT interval duration (QTc) nor cardiac events in any of the 3 mutation groups. When the mutation groups were combined, the derived SNP haplotype of rs8234 and rs10798 located on the same haplotype with the mutation was associated with a shorter QTc interval (P
- Published
- 2016
3. Novel calmodulin (CALM2) mutations associated with congenital arrhythmia susceptibility
- Author
-
Makita, N., Yagihara, N., Crotti, L., Johnson, C.N., Beckmann, B.M., Roh, M.S., Shigemizu, D., Lichtner, P., Ishikawa, T., Aiba, T., Homfray, T., Behr, E.R., Klug, D., Denjoy, I., Mastantuono, E., Theisen, D., Tsunoda, T., Satake, W., Toda, T., Nakagawa, H., Tsuji, Y., Tsuchiya, T., Yamamoto, H., Miyamoto, Y., Endo, N., Kimura, A., Ozaki, K., Motomura, H., Suda, K., Tanaka, T., Schwartz, P.J., Meitinger, T., Kääb, S., Guicheney, P., Shimizu, W., Bhuiyan, Z.A., Watanabe, H., Chazin, W.J., and George, A.L.
- Subjects
congenital, hereditary, and neonatal diseases and abnormalities ,cardiovascular diseases ,Calmodulin ,Genetics ,Long Qt Syndrome ,Ventricular Arrhythmia - Abstract
BACKGROUND: -Genetic predisposition to life-threatening cardiac arrhythmias such as in congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. METHODS AND RESULTS: -We employed conventional and next-generation sequencing approaches including exome analysis in genotype-negative LQTS probands. We identified five novel de novo missense mutations in CALM2 in three subjects with LQTS (p.N98S, p.N98I, p.D134H) and two subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1-9 years. Three of five probands had cardiac arrest and one of these subjects did not survive. Although all probands had LQTS, two subjects also exhibited electrocardiographic features consistent with CPVT. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of five probands responded to β-blocker therapy whereas one subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within calcium binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced calcium binding affinity. CONCLUSIONS: -CALM2M mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.
- Published
- 2014
4. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome.
- Author
-
Krane M, Dreßen M, Santamaria G, My I, Schneider CM, Dorn T, Laue S, Mastantuono E, Berutti R, Rawat H, Gilsbach R, Schneider P, Lahm H, Schwarz S, Doppler SA, Paige S, Puluca N, Doll S, Neb I, Brade T, Zhang Z, Abou-Ajram C, Northoff B, Holdt LM, Sudhop S, Sahara M, Goedel A, Dendorfer A, Tjong FVY, Rijlaarsdam ME, Cleuziou J, Lang N, Kupatt C, Bezzina C, Lange R, Bowles NE, Mann M, Gelb BD, Crotti L, Hein L, Meitinger T, Wu S, Sinnecker D, Gruber PJ, Laugwitz KL, and Moretti A
- Subjects
- Genetic Heterogeneity, Humans, Hypoplastic Left Heart Syndrome genetics, Organogenesis genetics
- Abstract
Background: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role., Methods: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls., Results: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues., Conclusions: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.
- Published
- 2021
- Full Text
- View/download PDF
5. Identification of Cadherin 2 ( CDH2 ) Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy.
- Author
-
Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta MC, Chin A, Laing N, Ntusi NB, Chong M, Horsfall C, Pimstone SN, Gentilini D, Parati G, Strom TM, Meitinger T, Pare G, Schwartz PJ, and Crotti L
- Subjects
- Adolescent, Adult, Amino Acid Substitution, Female, Humans, Male, Antigens, CD genetics, Arrhythmogenic Right Ventricular Dysplasia genetics, Cadherins genetics, Exome, Mutation, Missense
- Abstract
Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically heterogeneous condition caused by mutations in genes encoding desmosomal proteins in up to 60% of cases. The 40% of genotype-negative cases point to the need of identifying novel genetic substrates by studying genotype-negative ARVC families., Methods and Results: Whole exome sequencing was performed on 2 cousins with ARVC. Validation of 13 heterozygous variants that survived internal quality and frequency filters was performed by Sanger sequencing. These variants were also genotyped in all family members to establish genotype-phenotype cosegregation. High-resolution melting analysis followed by Sanger sequencing was used to screen for mutations in cadherin 2 ( CDH2 ) gene in unrelated genotype-negative patients with ARVC. In a 3-generation family, we identified by whole exome sequencing a novel mutation in CDH2 (c.686A>C, p.Gln229Pro) that cosegregated with ARVC in affected family members. The CDH2 c.686A>C variant was not present in >200 000 chromosomes available through public databases, which changes a conserved amino acid of cadherin 2 protein and is supported as the causal mutation by parametric linkage analysis. We subsequently screened 73 genotype-negative ARVC probands tested previously for mutations in known ARVC genes and found an additional likely pathogenic variant in CDH2 (c.1219G>A, p.Asp407Asn). CDH2 encodes cadherin 2 (also known as N-cadherin), a protein that plays a vital role in cell adhesion, making it a biologically plausible candidate gene in ARVC pathogenesis., Conclusions: These data implicate CDH2 mutations as novel genetic causes of ARVC and contribute to a more complete identification of disease genes involved in cardiomyopathy., (© 2017 American Heart Association, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
6. Genetic Modifiers for the Long-QT Syndrome: How Important Is the Role of Variants in the 3' Untranslated Region of KCNQ1?
- Author
-
Crotti L, Lahtinen AM, Spazzolini C, Mastantuono E, Monti MC, Morassutto C, Parati G, Heradien M, Goosen A, Lichtner P, Meitinger T, Brink PA, Kontula K, Swan H, and Schwartz PJ
- Subjects
- Europe, Female, Gene Frequency, Genetic Association Studies, Genetic Predisposition to Disease, Haplotypes, Heredity, Humans, Linkage Disequilibrium, Male, Pedigree, Phenotype, Risk Factors, Romano-Ward Syndrome diagnosis, Romano-Ward Syndrome physiopathology, Severity of Illness Index, South Africa, 3' Untranslated Regions, Genes, Modifier, KCNQ1 Potassium Channel genetics, Polymorphism, Single Nucleotide, Romano-Ward Syndrome genetics
- Abstract
Background: Long-QT syndrome is an inherited cardiac channelopathy characterized by delayed repolarization, risk of life-threatening arrhythmia, and significant clinical variability even within families. Three single-nucleotide polymorphisms (SNPs) in the 3' untranslated region of KCNQ1 were recently suggested to be associated with suppressed gene expression and hence decreased disease severity when located on the same haplotype with a disease-causing KCNQ1 mutation. We sought to replicate this finding in a larger and a genetically more homogeneous population of KCNQ1 mutation carriers., Methods and Results: The 3 SNPs (rs2519184, rs8234, and rs10798) were genotyped in a total of 747 KCNQ1 mutation carriers with A341V, G589D, or IVS7-2A>G mutation. The SNP haplotypes were assigned based on family trees. The SNP allele frequencies and clinical severity differed between the 3 mutation groups. The different SNP haplotypes were neither associated with heart rate-corrected QT interval duration (QTc) nor cardiac events in any of the 3 mutation groups. When the mutation groups were combined, the derived SNP haplotype of rs8234 and rs10798 located on the same haplotype with the mutation was associated with a shorter QTc interval (P<0.05) and a reduced occurrence of cardiac events (P<0.01), consistent with the previous finding. However, when the population-specific mutation was controlled for, both associations were no longer evident., Conclusions: 3' Untranslated region SNPs are not acting as genetic modifiers in a large group of LQT1 patients. The confounding effect of merging a genetically and clinically heterogeneous group of patients needs to be taken into account when studying disease modifiers., (© 2016 American Heart Association, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
7. Novel calmodulin mutations associated with congenital arrhythmia susceptibility.
- Author
-
Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, Shigemizu D, Lichtner P, Ishikawa T, Aiba T, Homfray T, Behr ER, Klug D, Denjoy I, Mastantuono E, Theisen D, Tsunoda T, Satake W, Toda T, Nakagawa H, Tsuji Y, Tsuchiya T, Yamamoto H, Miyamoto Y, Endo N, Kimura A, Ozaki K, Motomura H, Suda K, Tanaka T, Schwartz PJ, Meitinger T, Kääb S, Guicheney P, Shimizu W, Bhuiyan ZA, Watanabe H, Chazin WJ, and George AL Jr
- Subjects
- Adrenergic beta-Antagonists therapeutic use, Adult, Age of Onset, Amino Acid Sequence, Calcium chemistry, Calcium metabolism, Calmodulin metabolism, Child, Child, Preschool, Electrocardiography, Female, Genetic Predisposition to Disease, High-Throughput Nucleotide Sequencing, Humans, Infant, Long QT Syndrome drug therapy, Long QT Syndrome pathology, Male, Molecular Sequence Data, Mutation, Missense, Pedigree, Protein Binding, Sequence Analysis, DNA, Tachycardia, Ventricular drug therapy, Tachycardia, Ventricular pathology, Calmodulin genetics, Long QT Syndrome genetics, Tachycardia, Ventricular genetics
- Abstract
Background: Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations., Methods and Results: We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca(2+)-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca(2+)-binding affinity., Conclusions: CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT., (© 2014 American Heart Association, Inc.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.