Objective: The aim of this study was to test the hypothesis that exercise training promotes motor recovery after stroke by facilitating axonal remodeling via inhibition of the Nogo-A/NgR1 and Rho-A pathway., Design: A distal middle cerebral artery occlusion model was generated in stroke-prone renovascular hypertensive rats. Stroke-prone renovascular hypertensive rats were randomly divided into a control group, an exercise training group, and a sham group. Motor function was measured using the grip strength test. Axon and myelin remodeling markers, growth-associated protein 43, myelin basic protein, Tau, and amyloid precursor protein were detected by immunofluorescence. The expression of Nogo-A, NgR1, and Rho-A was demonstrated by immunofluorescence and Western blotting in the peri-infarction area at 7, 14, 28, and 52 days after distal middle cerebral artery occlusion., Results: Grip strength was higher in the exercise training group (P < 0.05). Exercise training increased the expression of growth-associated protein 43, myelin basic protein (at 7, 14, and 28 days), and Tau (at 7 and 14 days), and decreased the expression of axonal damage amyloid precursor protein (at 7 and 14 days), compared with the control group. The protein levels of Nogo-A (at 7 and 14 days), NgR1 (at 7, 14, and 28 days), and Rho-A (at 14 and 28 days) were reduced after exercise training., Conclusions: Exercise training promotes axonal recovery, which is associated with functional improvement after cerebral infarction. Down-regulation of the Nogo-A/NgR1/Rho-A may mediate the axonal remodeling induced by exercise training.