1. EMPIRICAL COMPARISON AND ANALYSIS OF MACHINE LEARNING-BASED APPROACHES FOR DRUGGABLE PROTEIN IDENTIFICATION.
- Author
-
Shoombuatong, Watshara, Schaduangrat, Nalini, and Nikomb, Jaru
- Subjects
- *
PROTEOMICS , *MACHINE learning , *FEATURE extraction , *DRUG target , *SCIENTIFIC community - Abstract
Efficiently and precisely identifying drug targets is crucial for developing and discovering potential medications. While conventional experimental approaches can accurately pinpoint these targets, they suffer from time constraints and are not easily adaptable to high-throughput processes. On the other hand, computational approaches, particularly those utilizing machine learning (ML), offer an efficient means to accelerate the prediction of druggable proteins based solely on their primary sequences. Recently, several state-of-the-art computational methods have been developed for predicting and analyzing druggable proteins. These computational methods showed high diversity in terms of benchmark datasets, feature extraction schemes, ML algorithms, evaluation strategies and webserver/software usability. Thus, our objective is to reexamine these computational approaches and conduct a comprehensive assessment of their strengths and weaknesses across multiple aspects. In this study, we deliver the first comprehensive survey regarding the state-of-the-art computational approaches for in silico prediction of druggable proteins. First, we provided information regarding the existing benchmark datasets and the types of ML methods employed. Second, we investigated the effectiveness of these computational methods in druggable protein identification for each benchmark dataset. Third, we summarized the important features used in this field and the existing webserver/software. Finally, we addressed the present constraints of the existing methods and offer valuable guidance to the scientific community in designing and developing novel prediction models. We anticipate that this comprehensive review will provide crucial information for the development of more accurate and efficient druggable protein predictors. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF