1. ALMA spectral survey of Supernova 1987A - molecular inventory, chemistry, dynamics and explosive nucleosynthesis
- Author
-
Matsuura, M., Indebetouw, R., Woosley, S., Bujarrabal, V., Abellán, F. J., McCray, R., Kamenetzky, J., Fransson, C., Barlow, M. J., Gomez, H. L., Cigan, P., De Looze, I., Spyromilio, J., Staveley-Smith, L., Zanardo, G., Roche, P., Larsson, Josefin, Viti, S., van Loon, J. T., Wheeler, J. C., Baes, M., Chevalier, R., Lundqvist, P., Marcaide, J. M., Dwek, E., Meixner, M., Ng, C. -Y, Sonneborn, G., Yates, J., Matsuura, M., Indebetouw, R., Woosley, S., Bujarrabal, V., Abellán, F. J., McCray, R., Kamenetzky, J., Fransson, C., Barlow, M. J., Gomez, H. L., Cigan, P., De Looze, I., Spyromilio, J., Staveley-Smith, L., Zanardo, G., Roche, P., Larsson, Josefin, Viti, S., van Loon, J. T., Wheeler, J. C., Baes, M., Chevalier, R., Lundqvist, P., Marcaide, J. M., Dwek, E., Meixner, M., Ng, C. -Y, Sonneborn, G., and Yates, J.
- Abstract
We report the first molecular line survey of Supernova 1987A in the millimetre wavelengthrange. In the Atacama Large Millimeter/submillimeter Array (ALMA) 210–300 and 340–360 GHz spectra, we detected cold (20–170 K) CO,28SiO, HCO+and SO, with weaker linesof29SiO from ejecta. This is the first identification of HCO+and SO in a young supernovaremnant. We find a dip in the J=6–5 and 5–4 SiO line profiles, suggesting that the ejectamorphology is likely elongated. The difference of the CO and SiO line profiles is consistent withhydrodynamic simulations, which show that Rayleigh–Taylor instabilities cause mixing of gas,with heavier elements much more disturbed, making more elongated structure. We obtainedisotopologue ratios of28SiO/29SiO>13,28SiO/30SiO>14 and12CO/13CO>21, with themost likely limits of28SiO/29SiO>128,28SiO/30SiO>189. Low29Si and30Si abundancesin SN 1987A are consistent with nucleosynthesis models that show inefficient formation ofneutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud.The deduced large mass of HCO+(∼5×10−6M) and small SiS mass (<6×10−5M)might be explained by some mixing of elements immediately after the explosion. The mixingmight have caused some hydrogen from the envelope to sink into carbon- and oxygen-richzones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygenatoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. OurALMA observations open up a new window to investigate chemistry, dynamics and explosivenucleosynthesis in supernovae., QC 20220201
- Published
- 2017
- Full Text
- View/download PDF