1. Optimal hedging of derivatives with transaction costs
- Author
-
Aurell, Erik, Muratore-Ginnaneschi, Paolo, Aurell, Erik, and Muratore-Ginnaneschi, Paolo
- Abstract
We investigate the optimal strategy over a finite time horizon for a portfolio of stock and bond and a derivative in an multiplicative Markovian market model with transaction costs (friction). The optimization problem is solved by a Hamilton-Bellman-Jacobi equation, which by the verification theorem has well-behaved solutions if certain conditions on a potential are satisfied. In the case at hand, these conditions simply imply arbitrage-free ("Black-Scholes") pricing of the derivative. While pricing is hence not changed by friction allow a portfolio to fluctuate around a delta hedge. In the limit of weak friction, we determine the optimal control to essentially be of two parts: a strong control, which tries to bring the stock-and-derivative portfolio towards a Black-Scholes delta hedge; and a weak control, which moves the portfolio by adding or subtracting a Black-Scholes hedge. For simplicity we assume growth-optimal investment criteria and quadratic friction., QC 20120110
- Published
- 2006
- Full Text
- View/download PDF