1. Soft X-ray synchrotron radiation spectroscopy study of rare-earth chalcogenide charge-density wave compounds
- Author
-
Hyun-Woo Kim, Seungho Seong, J. D. Denlinger, Y. S. Kwon, J.-S. Kang, and Eunsook Lee
- Subjects
X-ray absorption spectroscopy ,Materials science ,Condensed matter physics ,Absorption spectroscopy ,Photoemission spectroscopy ,Chalcogenide ,Binding energy ,General Physics and Astronomy ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,chemistry.chemical_compound ,chemistry ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Spectroscopy ,Charge density wave - Abstract
The electronic structures of the layered rare-earth chalcogenide compounds of CeTe2, PrTe2, and PrTe3, which have the charge-density wave (CDW) transition and possibly the chiral transition, have been investigated by employing soft X-ray absorption spectroscopy (XAS) and angle-resolved photoemission spectroscopy (ARPES). R 3d XAS measurements show that the valence states of Ce and Pr ions are nearly trivalent in all the compounds. Similar band dispersions are observed in their measured ARPES data, but with the band positions in PrTe3 being shifted up in energy compared to those in CeTe2 and PrTe2. These findings suggest that their Te 5p band structures are determined mainly by the 2D interactions in the Te(2)/Te(3) sheets, but with a larger number of holes in the Te 5p bands in PrTe3 than in CeTe2 and PrTe2. The measured constant energy maps of CeTe2, PrTe2, and PrTe3 for high binding energies are similar to one another, reflecting the Te 5p band structures of the Te(2)/Te(3) square nets. In contrast, the Fermi surfaces (FSs) of CeTe2 and PrTe3 exhibit extra features, different from the FS of the ideal Te(2)/Te(3) square nets, which arise from the CDW-induced FS reconstruction in the Te(2)/Te(3) sheets.
- Published
- 2017
- Full Text
- View/download PDF