1. Differences in metabolomic profiles between Black and White women in the U.S.: Analyses from two prospective cohorts.
- Author
-
McGee EE, Zeleznik OA, Balasubramanian R, Hu J, Rosner BA, Wactawski-Wende J, Clish CB, Avila-Pacheco J, Willett WC, Rexrode KM, Tamimi RM, and Eliassen AH
- Subjects
- Adult, Aged, Female, Humans, Middle Aged, Metabolome, Prospective Studies, Risk Factors, United States, Women's Health, Black or African American, Metabolomics, White People statistics & numerical data, White
- Abstract
There is growing interest in incorporating metabolomics into public health practice. However, Black women are under-represented in many metabolomics studies. If metabolomic profiles differ between Black and White women, this under-representation may exacerbate existing Black-White health disparities. We therefore aimed to estimate metabolomic differences between Black and White women in the U.S. We leveraged data from two prospective cohorts: the Nurses' Health Study (NHS; n = 2077) and Women's Health Initiative (WHI; n = 2128). The WHI served as the replication cohort. Plasma metabolites (n = 334) were measured via liquid chromatography-tandem mass spectrometry. Observed metabolomic differences were estimated using linear regression and metabolite set enrichment analyses. Residual metabolomic differences in a hypothetical population in which the distributions of 14 risk factors were equalized across racial groups were estimated using inverse odds ratio weighting. In the NHS, Black-White differences were observed for most metabolites (75 metabolites with observed differences ≥ |0.50| standard deviations). Black women had lower average levels than White women for most metabolites (e.g., for N6, N6-dimethlylysine, mean Black-White difference = - 0.98 standard deviations; 95% CI: - 1.11, - 0.84). In metabolite set enrichment analyses, Black women had lower levels of triglycerides, phosphatidylcholines, lysophosphatidylethanolamines, phosphatidylethanolamines, and organoheterocyclic compounds, but higher levels of phosphatidylethanolamine plasmalogens, phosphatidylcholine plasmalogens, cholesteryl esters, and carnitines. In a hypothetical population in which distributions of 14 risk factors were equalized, Black-White metabolomic differences persisted. Most results replicated in the WHI (88% of 272 metabolites available for replication). Substantial differences in metabolomic profiles exist between Black and White women. Future studies should prioritize racial representation., (© 2024. Springer Nature B.V.)
- Published
- 2024
- Full Text
- View/download PDF