1. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways.
- Author
-
Passarinho P, Ketelaar T, Xing M, van Arkel J, Maliepaard C, Hendriks MW, Joosen R, Lammers M, Herdies L, den Boer B, van der Geest L, and Boutilier K
- Subjects
- Actins metabolism, Arabidopsis genetics, Arabidopsis growth & development, Arabidopsis metabolism, Cell Proliferation, Cytoskeleton metabolism, Gene Expression Regulation, Plant, Heat-Shock Proteins genetics, Heat-Shock Proteins metabolism, Oligonucleotide Array Sequence Analysis, Seedlings genetics, Seedlings growth & development, Seedlings metabolism, Transcription Factors genetics, Arabidopsis cytology, Brassica napus genetics, Cell Enlargement, Transcription Factors metabolism
- Abstract
Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover. A number of the target genes have been shown to be expressed in meristems or to be involved in cell wall modifications associated with dividing/growing cells. One of the BBM target genes encodes an ADF/cofilin protein, ACTIN DEPOLYMERIZING FACTOR9 (ADF9). The consequences of BBM:GR activation on the actin cytoskeleton were followed using the GFP:FIMBRIN ACTIN BINDING DOMAIN2 (GFP:FABD) actin marker. Dexamethasone-mediated BBM:GR activation induced dramatic changes in actin organization resulting in the formation of dense actin networks with high turnover rates, a phenotype that is consistent with cells that are rapidly undergoing cytoplasmic reorganization. Together the data suggest that the BBM transcription factor activates a complex network of developmental pathways associated with cell proliferation and growth.
- Published
- 2008
- Full Text
- View/download PDF