1. Development of dopaminergic genetic associations with visuospatial, verbal and social working memory
- Author
-
Emma J. Kilford, Iroise Dumontheil, and Sarah-Jayne Blakemore
- Subjects
Paper ,Adult ,Male ,Adolescent ,Genotype ,Cognitive Neuroscience ,Dopamine ,Prefrontal Cortex ,Single-nucleotide polymorphism ,social cognition ,Catechol O-Methyltransferase ,Polymorphism, Single Nucleotide ,050105 experimental psychology ,working memory ,Cognition ,Social cognition ,Developmental and Educational Psychology ,medicine ,Humans ,0501 psychology and cognitive sciences ,Allele ,Prefrontal cortex ,Child ,development ,Working memory ,05 social sciences ,Dopaminergic ,COMT ,Memory, Short-Term ,Papers ,Female ,genetic ,Psychology ,Neuroscience ,050104 developmental & child psychology ,medicine.drug - Abstract
Dopamine transmission in the prefrontal cortex (PFC) supports working memory (WM), the temporary holding, processing and manipulation of information in one's mind. The gene coding the catechol‐O‐methyltransferase (COMT) enzyme, which degrades dopamine, in particular in the PFC, has a common single nucleotide polymorphism leading to two versions of the COMT enzyme which vary in their enzymatic activity. The methionine (Met) allele has been associated with higher WM performance and lower activation of the PFC in executive function tasks than the valine (Val) allele. In a previous study, COMT genotype was associated with performance on verbal and visuospatial WM tasks in adults, as well as with performance on a novel social WM paradigm that requires participants to maintain and manipulate information about the traits of their friends or family over a delay. Here, data collected in children and adolescents (N = 202) were compared to data from the adult sample (N = 131) to investigate possible age differences in genetic associations. Our results replicate and extend previous work showing that the pattern of superior WM performance observed in Met/Met adults emerges during development. These findings are consistent with a decrease in prefrontal dopamine levels during adolescence. Developmentally moderated genetic effects were observed for both visuospatial and social WM, even when controlling for non‐social WM performance, suggesting that the maintenance and manipulation of social information may also recruit the dopamine neurotransmitter system. These findings show that development should be considered when trying to understand the impact of genetic polymorphisms on cognitive function., Rs4680 is a genetic polymorphism with two allelic variants (Met vs. Val) that affects the enzymatic activity of the catechol‐O‐methyltransferase (COMT) enzyme, which degrades dopamine. Met/Met adults have been found to have better performance and lower prefrontal cortex activity during working memory (WM) tasks. This study shows that the genetic association with visuospatial WM, but not verbal WM performance, emerges during development, and that the same pattern can be observed in a WM task requiring participants to manipulate social information. These results are consistent with a decrease in prefrontal dopamine levels during development and suggest an involvement of dopaminergic neurotransmission in social cognition.
- Published
- 2019