1. RAF1 gene fusions are recurrent driver events in infantile fibrosarcoma-like mesenchymal tumors.
- Author
-
Motta M, Barresi S, Pizzi S, Bifano D, Lopez Marti J, Garrido-Pontnou M, Flex E, Bruselles A, Giovannoni I, Rotundo G, Fragale A, Tirelli V, Vallese S, Ciolfi A, Bisogno G, Alaggio R, and Tartaglia M
- Subjects
- Humans, Infant, Female, Male, Kidney Neoplasms genetics, Kidney Neoplasms pathology, Gene Fusion, Signal Transduction genetics, Proto-Oncogene Proteins c-ets genetics, Cell Proliferation, Gene Rearrangement, ETS Translocation Variant 6 Protein, Receptor, trkC, Fibrosarcoma genetics, Fibrosarcoma pathology, Proto-Oncogene Proteins c-raf genetics, Oncogene Proteins, Fusion genetics, Nephroma, Mesoblastic genetics, Nephroma, Mesoblastic pathology
- Abstract
Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland., (© 2024 The Pathological Society of Great Britain and Ireland.)
- Published
- 2024
- Full Text
- View/download PDF