1. The geography of metapopulation synchrony in dendritic river networks
- Author
-
Xingli Giam, Claire Jacquet, Stefano Larsen, Marie-Josée Fortin, Ana Filipa Filipe, Lise Comte, Sapna Sharma, Remo Ryser, Ulrich Brose, Albert Ruhí, Katie Irving, Tibor Erős, Julian D. Olden, Pablo A. Tedesco, Fondazione Edmund Mach di San Michele all'Adige = Edmund Mach Foundation of San Michele all'Adige, University of Trento [Trento], University of Washington [Seattle], Illinois State University, Universidade do Porto, Université de Lisbonne, University of Toronto, Swiss Federal Institute of Aquatic Science & Technology (EAWA), Laboratoire d'ingénierie pour les systèmes complexes (UR LISC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Universität Zürich [Zürich] = University of Zurich (UZH), German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany & [ 2 ] Univ Leipzig, Inst Biol, Leipzig, Germany, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Evolution et Diversité Biologique (EDB), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Balaton Limnological Research Institute, Centre for Ecological Research [Budapest], Eötvös Loránd University (ELTE)-Hungarian Academy of Sciences (MTA)-Eötvös Loránd University (ELTE)-Hungarian Academy of Sciences (MTA), Southern California Coastal Water Research Project, University of California [Berkeley], University of California, York University [Toronto], Universidade do Porto = University of Porto, German Centre for Integrative Biodiversity Research (iDiv), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC), sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig - German Research Foundation FZT 118, and European Project: 748969,SHYDRO-ALP
- Subjects
0106 biological sciences ,Letter ,River ecosystem ,Water flow ,Population Dynamics ,Metapopulation ,Network topology ,010603 evolutionary biology ,01 natural sciences ,network topology ,spatial synchrony ,Rivers ,Settore BIO/07 - ECOLOGIA ,Animals ,Ecosystem ,series ,Letters ,14. Life underwater ,Population dynamics of fisheries ,Ecology, Evolution, Behavior and Systematics ,spatial patterns ,Geography ,Ecology ,010604 marine biology & hydrobiology ,Fish time-series ,Fish time‐series ,15. Life on land ,Fish time ,Europe ,fluvial variography ,Habitat ,[SDE]Environmental Sciences ,Spatial ecology ,metapopulations - Abstract
Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats., Synchrony between spatially separated populations influences species persistence and ecosystem stability. We provide theoretical and empirical evidence that in dendritic habitats, such as river ecosystems, network topology and flow directionality generate fundamental spatial patterns in fish metapopulation synchrony. We articulate an empirical geography of synchrony within river basins that allow predicting synchrony patterns even if population time‐series data are not available.
- Published
- 2021