1. Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis
- Author
-
Scarlet Nazarian, Ben Glover, Hutan Ashrafian, Ara Darzi, and Julian Teare
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Public aspects of medicine ,RA1-1270 - Abstract
BackgroundColonoscopy reduces the incidence of colorectal cancer (CRC) by allowing detection and resection of neoplastic polyps. Evidence shows that many small polyps are missed on a single colonoscopy. There has been a successful adoption of artificial intelligence (AI) technologies to tackle the issues around missed polyps and as tools to increase the adenoma detection rate (ADR). ObjectiveThe aim of this review was to examine the diagnostic accuracy of AI-based technologies in assessing colorectal polyps. MethodsA comprehensive literature search was undertaken using the databases of Embase, MEDLINE, and the Cochrane Library. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Studies reporting the use of computer-aided diagnosis for polyp detection or characterization during colonoscopy were included. Independent proportions and their differences were calculated and pooled through DerSimonian and Laird random-effects modeling. ResultsA total of 48 studies were included. The meta-analysis showed a significant increase in pooled polyp detection rate in patients with the use of AI for polyp detection during colonoscopy compared with patients who had standard colonoscopy (odds ratio [OR] 1.75, 95% CI 1.56-1.96; P
- Published
- 2021
- Full Text
- View/download PDF