1. Differential Antivasoconstrictor Effects of Levcromakalim and Rilmakalim on the Isolated Human Mammary Artery and Saphenous Vein
- Author
-
Tomislav Kazic, Aleksandra Novakovic, Zoran Sajic, Ljiljana Gojkovic-Bukarica, Miodrag Peric, Bojana B. Beleslin-Cokic, Bosko Djukanovic, Nina Japundzic-Zigon, and Dusan Nezic
- Subjects
Cromakalim ,medicine.medical_specialty ,Pyrrolidines ,Contraction (grammar) ,Vascular smooth muscle ,In Vitro Techniques ,030204 cardiovascular system & hematology ,Pharmacology ,Glibenclamide ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,Humans ,Vasoconstrictor Agents ,Saphenous Vein ,Chromans ,Mammary Arteries ,RILMAKALIM ,030304 developmental biology ,0303 health sciences ,Dose-Response Relationship, Drug ,Chemistry ,lcsh:RM1-950 ,Electrical field stimulation ,Electric Stimulation ,Vasodilation ,Dose–response relationship ,lcsh:Therapeutics. Pharmacology ,medicine.anatomical_structure ,Vasoconstriction ,Cardiology ,Mammary artery ,Molecular Medicine ,medicine.drug ,Artery - Abstract
It is well established that spasm of an arterial and venous graft conduit may occur during harvesting or after coronary artery bypass grafting (CABG). The antivasoconstrictor effect of levcromakalim and rilmakalim, K(+) channel openers (KCOs), was studied in isolated human internal mammary artery (HIMA) and human saphenous vein (HSV) prepared for CABG. HIMA and HSV rings were contracted by electrical field stimulation (EFS, 20 Hz ) or with exogenous noradrenaline (NA). Levcromakalim induced a concentration-dependent and equipotent inhibition of contraction of HIMA and HSV preconstricted by EFS and exogenoulsy applied NA, while rilmakalim produced a stronger inhibition of EFS- than NA-evoked contractions. Glibenclamide, a selective ATP-sensitive K(+) channel (K(ATP) channel) blocker, significantly antagonized levcromakalim-induced inhibition of EFS- and NA-evoked contractions, as well as rilmakalim-induced inhibiton of EFS-evoked contractions on HIMA and HSV. However, glibenclamide failed to antagonize rilmakalim-induced inhibition of NA-evoked contractions. The results suggest that the antivasoconstrictor effect of levcromakalim occurs postsynapticaly by the opening K(ATP) channels in the vascular smooth muscle cells. They also suggest that the effect of rilmakalim on EFS-evoked contractions involves K(ATP) channels located pre-synaptically. However, the mechanism by which rilmakalim inhibits NA-evoked contraction seems to be K(ATP) channel independent and warrants further elucidation.
- Published
- 2003
- Full Text
- View/download PDF