1. Thermoslutal Convection in Walters’ (Model B') Rotating Fluid Permeated with Suspended Particles and Variable Gravity Field in Porous Medium in Hydromagnetics
- Author
-
G. C. Rana
- Subjects
Walters’ (Model ) elastico-viscous fluid ,Thermosolutal convection ,Suspended particles ,Magnetic field ,Variable gravity field ,Porous medium. ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
The thermosolutal convection in Walters’ (Model B') elastico-viscous rotating fluid permeated with suspended particles (fine dust) and variable gravity field in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved numerically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, Walters’ (Model B') elastico-viscous fluid behave like an ordinary Newtonian fluid and it is observed that rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown graphically. AMS subject classifications are 76A10, 76E07, 76E25 and 76S05.
- Published
- 2013