1. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
- Author
-
Yong Wang, Shoujun Wang, Chase Calvi, Reed Hollinger, Jorge J. Rocca, Alden Curtis, Vyacheslav N. Shlyaptsev, Vural Kaymak, Maria Gabriela Capeluto, Alex Rockwood, Stephen Kasdorf, A. Moreau, and Alexander Pukhov
- Subjects
Materials science ,HOT ELECTRONS ,ELECTRON ACCELERATION ,Dephasing ,X-RAYS ,Nanowire ,Physics::Optics ,Electron ,01 natural sciences ,HIGH ENERGY DENSITY PLASMAS ,010305 fluids & plasmas ,law.invention ,purl.org/becyt/ford/1 [https] ,law ,0103 physical sciences ,LASER-MATTER INTERACTIONS ,010306 general physics ,Plasma ,purl.org/becyt/ford/1.3 [https] ,Condensed Matter Physics ,Laser ,Nuclear Energy and Engineering ,Femtosecond ,Cathode ray ,Electron temperature ,Atomic physics - Abstract
We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5. Fil: Moreau, A.. State University of Colorado - Fort Collins; Estados Unidos Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos Fil: Calvi, C.. State University of Colorado - Fort Collins; Estados Unidos Fil: Wang, S.. State University of Colorado - Fort Collins; Estados Unidos Fil: Wang, Y.. State University of Colorado - Fort Collins; Estados Unidos Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Rockwood, A.. State University of Colorado - Fort Collins; Estados Unidos Fil: Curtis, A.. State University of Colorado - Fort Collins; Estados Unidos Fil: Kasdorf, S.. State University of Colorado - Fort Collins; Estados Unidos Fil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados Unidos Fil: Kaymak, V.. Universitat Dusseldorf; Alemania Fil: Pukhov, A.. Universitat Dusseldorf; Alemania Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
- Published
- 2020
- Full Text
- View/download PDF