6 results on '"Rozo, E."'
Search Results
2. redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG.
- Author
-
Rykoff, E. S., Rozo, E., Busha, M. T., Cunha, C. E., Finoguenov, A., Evrard, A., Hao, J., Koester, B. P., Leauthaud, A., Nord, B., Pierre, M., Reddick, R., Sadibekova, T., Sheldon, E. S., and Wechsler, R. H.
- Subjects
- *
GALAXY clusters , *ASTRONOMICAL photometry , *GALACTIC redshift , *ALGORITHMS , *REDSHIFT - Abstract
We describe redMaPPer, a new red sequence cluster finder specifically designed to make optimal use of ongoing and near-future large photometric surveys. The algorithm has multiple attractive features: (1) it can iteratively self-train the red sequence model based on a minimal spectroscopic training sample, an important feature for high-redshift surveys. (2) It can handle complex masks with varying depth. (3) It produces cluster-appropriate random points to enable large-scale structure studies. (4) All clusters are assigned a full redshift probability distribution P(z). (5) Similarly, clusters can have multiple candidate central galaxies, each with corresponding centering probabilities. (6) The algorithm is parallel and numerically efficient: it can run a Dark Energy Survey-like catalog in ∼500 CPU hours. (7) The algorithm exhibits excellent photometric redshift performance, the richness estimates are tightly correlated with external mass proxies, and the completeness and purity of the corresponding catalogs are superb. We apply the redMaPPer algorithm to ∼10, 000 deg2 of SDSS DR8 data and present the resulting catalog of ∼25,000 clusters over the redshift range z ∊ [0.08, 0.55]. The redMaPPer photometric redshifts are nearly Gaussian, with a scatter σz ≈ 0.006 at z ≈ 0.1, increasing to σz ≈ 0.02 at z ≈ 0.5 due to increased photometric noise near the survey limit. The median value for |Δz|/(1 + z) for the full sample is 0.006. The incidence of projection effects is low (⩽5%). Detailed performance comparisons of the redMaPPer DR8 cluster catalog to X-ray and Sunyaev-Zel'dovich catalogs are presented in a companion paper. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
3. ROBUST OPTICAL RICHNESS ESTIMATION WITH REDUCED SCATTER.
- Author
-
Rykoff, E. S., Koester, B. P., Rozo, E., Annis, J., Evrard, A. E., Hansen, S. M., Hao, J., Johnston, D. E., McKay, T. A., and Wechsler, R. H.
- Subjects
METAPHYSICAL cosmology ,PHOTOMETRY ,X-rays ,DATA analysis ,GALAXY clusters - Abstract
Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence-matched filter richness estimator of Rozo et al. implemented on the maxBCG cluster catalog and evaluate the impact of these changes on the scatter in X-ray luminosity (Lx) at fixed richness, using Lx from the ROSAT All-Sky Catalog as the best mass proxy available for the large area required. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that σ
ln Lx|λ = 0.63 ± 0.02 for clusters with M500c , > 1.6 x 1014 h70 -01 M®. The corresponding scatter in mass at fixed richness is σlnM|λ ≈0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a priori calibrations of the red sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 Å break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix A includes "easy-bake" instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with Sloan Digital Sky Survey data, as well as an augmented maxBCG catalog with the λ richness measured for each cluster. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
4. Measuring the Mean and Scatter of the X-Ray Luminosity-Optical Richness Relation for maxBCG Galaxy Clusters.
- Author
-
Rykoff, E. S., McKay, T. A., Becker, M. R., Evrard, A., Johnston, D. E., Koester, B. P., Rozo, E., Sheldon, E. S., and Wechsler, R. H.
- Published
- 2008
- Full Text
- View/download PDF
5. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters.
- Author
-
Becker, M. R., McKay, T. A., Koester, B., Wechsler, R. H., Rozo, E., Evrard, A., Johnston, D., Sheldon, E., Annis, J., Lau, E., Nichol, R., and Miller, C.
- Published
- 2007
- Full Text
- View/download PDF
6. Probing Galaxy Evolution in Massive Clusters Using ACT and DES: Splashback as a Cosmic Clock
- Author
-
Adhikari, Susmita, Shin, Tae-hyeon, Jain, Bhuvnesh, Hilton, Matt, Baxter, Eric, Chang, Chihway, Wechsler, Risa H., Battaglia, Nick, Bond, J. Richard, Bocquet, Sebastian, DeRose, Joseph, Choi, Steve K., Devlin, Mark, Dunkley, Jo, Evrard, August E., Ferraro, Simone, Hill, J. Colin, Hughes, John P., Gallardo, Patricio A., Lokken, Martine, MacInnis, Amanda, McMahon, Jeffrey, Madhavacheril, Mathew S., Nati, Frederico, Newburgh, Laura B., Niemack, Michael D., Page, Lyman A., Palmese, Antonella, Partridge, Bruce, Rozo, Eduardo, Rykoff, Eli, Salatino, Maria, Schillaci, Alessandro, Sehgal, Neelima, Sif��n, Crist��bal, To, Chun-Hao, Wollack, Ed, Wu, Hao-Yi, Xu, Zhilei, Aguena, Michel, Allam, Sahar, Amon, Alexandra, Annis, James, Avila, Santiago, Bacon, David, Bertin, Emmanuel, Bhargava, Sunayana, Brooks, David, Burke, David L., Rosell, Aurelio C., Kind, Matias Carrasco, Carretero, Jorge, Castander, Francisco Javier, Choi, Ami, Costanzi, Matteo, da Costa, Luiz N., De Vicente, Juan, Desai, Shantanu, Diehl, Thomas H., Doel, Peter, Everett, Spencer, Ferrero, Ismael, Fert��, Agn��s, Flaugher, Brenna, Fosalba, Pablo, Frieman, Josh, Garc��a-Bellido, Juan, Gaztanaga, Enrique, Gruen, Daniel, Gruendl, Robert A., Gschwend, Julia, Gutierrez, Gaston, Hartley, Will G., Hinton, Samuel R., Hollowood, Devon L., Honscheid, Klaus, James, David J., Jeltema, Tesla, Kuehn, Kyler, Kuropatkin, Nikolay, Lahav, Ofer, Lima, Marcos, Maia, Marcio A. G., Marshall, Jennifer L., Martini, Paul, Melchior, Peter, Menanteau, Felipe, Miquel, Ramon, Morgan, Robert, Ogando, Ricardo L. C., Paz-Chinch��n, Francisco, Malag��n, Andr��s Plazas, Sanchez, Eusebio, Santiago, Basilio, Scarpine, Vic, Serrano, Santiago, Sevilla-Noarbe, Ignacio, Smith, Mathew, Soares-Santos, Marcelle, Suchyta, Eric, Swanson, Molly E. C., Varga, Tamas N., Wilkinson, Reese D., Zhang, Yuanyuan, Austermann, Jason E., Beall, James A., Becker, Daniel T., Denison, Edward V., Duff, Shannon M., Hilton, Gene C., Hubmayr, Johannes, Ullom, Joel N., Van Lanen, Jeff, Vale, Leila R., Collaboration, DES, Collaboration, ACT, National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Instituto Nacional de Ciência e Tecnologia (Brasil), Adhikari, S, Shin, T, Jain, B, Hilton, M, Baxter, E, Chang, C, Wechsler, R, Battaglia, N, Bond, J, Bocquet, S, Choi, S, Derose, J, Devlin, M, Dunkley, J, Evrard, A, Ferraro, S, Hill, J, Hughes, J, Gallardo, P, Lokken, M, Macinnis, A, Madhavacheril, M, Mcmahon, J, Nati, F, Newburgh, L, Niemack, M, Page, L, Palmese, A, Partridge, B, Rozo, E, Rykoff, E, Salatino, M, Schillaci, A, Sehgal, N, Sifon, C, To, C, Wollack, E, Wu, H, Xu, Z, Aguena, M, Allam, S, Amon, A, Annis, J, Avila, S, Bacon, D, Bertin, E, Bhargava, S, Brooks, D, Burke, D, Rosell, A, Kind, M, Carretero, J, Castander, F, Choi, A, Costanzi, M, Da Costa, L, Vicente, J, Desai, S, Diehl, T, Doel, P, Everett, S, Ferrero, I, Ferte, A, Flaugher, B, Fosalba, P, Frieman, J, Garcia-Bellido, J, Gaztanaga, E, Gruen, D, Gruendl, R, Gschwend, J, Gutierrez, G, Hartley, W, Hinton, S, Hollowood, D, Honscheid, K, James, D, Jeltema, T, Kuehn, K, Kuropatkin, N, Lahav, O, Lima, M, Maia, M, Marshall, J, Martini, P, Melchior, P, Menanteau, F, Miquel, R, Morgan, R, L. C. Ogando, R, Paz-Chinchon, F, Malagon, A, Sanchez, E, Santiago, B, Scarpine, V, Serrano, S, Sevilla-Noarbe, I, Smith, M, Soares-Santos, M, Suchyta, E, E. C. Swanson, M, Varga, T, Wilkinson, R, Zhang, Y, Austermann, J, Beall, J, Becker, D, Denison, E, Duff, S, Hilton, G, Hubmayr, J, Ullom, J, Lanen, J, Vale, L, Adhikari, S., Shin, T. -H., Jain, B., Hilton, M., Baxter, E., Chang, C., Wechsler, R. H., Battaglia, N., Bond, J. R., Bocquet, S., Choi, S. K., Derose, J., Devlin, M., Dunkley, J., Evrard, A. E., Ferraro, S., Hill, J. C., Hughes, J. P., Gallardo, P. A., Lokken, M., Macinnis, A., Madhavacheril, M. S., Mcmahon, J., Nati, F., Newburgh, L. B., Niemack, M. D., Page, L. A., Palmese, A., Partridge, B., Rozo, E., Rykoff, E., Salatino, M., Schillaci, A., Sehgal, N., Sifon, C., C. -H., To, Wollack, E., H. -Y., Wu, Xu, Z., Aguena, M., Allam, S., Amon, A., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Burke, D. L., Rosell, A. C., Kind, M. C., Carretero, J., Castander, F. J., Choi, A., Costanzi, M., Da Costa, L. N., Vicente, J. D., Desai, S., Diehl, T. H., Doel, P., Everett, S., Ferrero, I., Ferte, A., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., L. C. Ogando R., Paz-Chinchon, F., Malagon, A. P., Sanchez, E., Santiago, B., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., E. C. Swanson M., Varga, T. N., Wilkinson, R. D., Zhang, Y., Austermann, J. E., Beall, J. A., Becker, D. T., Denison, E. V., Duff, S. M., Hilton, G. C., Hubmayr, J., Ullom, J. N., Lanen, J. V., and Vale, L. R.
- Subjects
Galaxy dark matter halos ,010308 nuclear & particles physics ,FOS: Physical sciences ,Cold dark matter ,Astronomy and Astrophysics ,Galaxy clusters ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology, SZ effect, Galaxy cluster ,Surveys ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Galaxy evolution ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Galaxy kinematics - Abstract
Adhikari, S., et al. (DES and ACT Collaboration), We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev-Zel'dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at 2.4-0.4+0.3 Mpc h-1. We split the galaxies on color and find significant differences in their profile shapes. Red and green-valley galaxies show a splashback-like minimum in their slope profile consistent with theory, while the bluest galaxies show a weak feature at a smaller radius. We develop a mapping of galaxies to subhalos in simulations and assign colors based on infall time onto their hosts. We find that the shift in location of the steepest slope and different profile shapes can be mapped to the average time of infall of galaxies of different colors. The steepest slope traces a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in clusters over 3.2 Gyr, green galaxies about 2.2 Gyr, while blue galaxies have been accreted most recently and have not reached apocenter. Using the full radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching occurs after a delay of about a gigayear and that galaxies quench rapidly thereafter with an exponential timescale of 0.6 Gyr., The DES Data Management System is supported by the NSF under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Unionʼs Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2)
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.