1. Effective operators in a single-jorbital
- Author
-
E. Derbali, B. Tellili, P. Van Isacker, C. Souga, Université de Tunis El Manar (UTM), Grand Accélérateur National d'Ions Lourds (GANIL), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université de Carthage - University of Carthage, and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Theoretical physics ,010308 nuclear & particles physics ,0103 physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,010306 general physics ,01 natural sciences - Abstract
25 pages, 7 figures, 5 tables, Accepted for publication in J. of Physics G; International audience; We present an analysis of effective operators in the shell model with up to three-body interactions in the Hamiltonian and two-body terms in electromagnetic transition operators when the nucleons are either neutrons or protons occupying a single-j orbital. We first show that evidence for an effective three-body interaction exists in the N = 50 isotones and in the lead isotopes but that the separate components of such interaction are difficult to obtain empirically. We then determine higher-order terms on more microscopic grounds. The starting point is a realistic two-body interaction in a large shell-model space together with a standard one-body transition operator, which, after restriction to the dominant orbital and with use of stationary perturbation theory, are transformed into effective versions with higher-order terms. An application is presented for the lead isotopes with neutrons in the 1g 9/2 orbital.
- Published
- 2018