1. Influence of gas environment and heating on atomic structures of platinum nanoparticle catalysts for proton-exchange membrane fuel cells
- Author
-
Yasuyoshi Nagai, Nobuo Tanaka, Edward D. Boyes, Pratibha L. Gai, Kenta Yoshida, Michael R. Ward, Tomoki Hiroyama, Yusuke Shimada, Xudong Zhang, and Leonardo Lari
- Subjects
Materials science ,Mechanical Engineering ,Nanoparticle ,Proton exchange membrane fuel cell ,Bioengineering ,02 engineering and technology ,General Chemistry ,Partial pressure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Platinum nanoparticles ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Nanoclusters ,Adsorption ,Chemical engineering ,Mechanics of Materials ,General Materials Science ,Surface layer ,Electrical and Electronic Engineering ,0210 nano-technology - Abstract
Atomic-scale relaxations of platinum nanoparticles (Pt NPs) for fuel-cell catalysts are evaluated by spherical-aberration corrected environmental transmission electron microscopy (ETEM) under reference high-vacuum and N2 atmospheres, and then under reactive H2, CO and O2 atmospheres, combined with ex situ durability test using an electrochemical half-cell. In high-vacuum, increasing roughness due to continuous relaxation of surface-adsorbed Pt atoms is quantified in real-space. Under H2 and N2 atmospheres at a critical partial pressure of 1 × 10−2 Pa the stability of the surface facets is for the first time found to be improved. The adsorption behaviour of CO molecules is investigated using experimentally measured Pt–Pt bond lengths on the topmost surface layer of Pt NPs. The deactivation of Pt NPs in the anode environment of a proton-exchange-membrane fuel-cell is demonstrated at the atomic-scale in the ETEM, and the transformation of NPs into disordered nanoclusters is systematically quantified using the partial size distribution of Pt atomic clusters under controlled heating experiments at 423, 573 and 723 K.
- Published
- 2019
- Full Text
- View/download PDF