1. Computational Simulation about the Impact of High Voltage Electrostatic Field on Crystallization of Calcium Carbonate Aqueous Solution
- Author
-
Fuji Wang, Yi Liu, D. D. Meng, D. F. Wang, and X. D. Cui
- Subjects
Computational simulation ,chemistry.chemical_compound ,Calcium carbonate ,Materials science ,Aqueous solution ,chemistry ,Chemical engineering ,law ,Electric field ,High voltage ,Crystallization ,law.invention - Abstract
Computational simulation method was used in two models of calcium carbonate aqueous solution to explore the mechanism of anti-scaling under electrostatic field on the molecular level. The binding energy between the surface and ions indicated that the surface (104) was more favorable for the growth of the new crystal, while it was much easier to decompose under field strength 1300 V/m. The diffusion coefficients of Ca2+ and CO3 2- revealed that the chemical reaction of Ca2+ and CO3 2- ions in Model-II was much difficult to form calcium carbonate crystal under electrostatic field. The hydration degree of Ca2+ with O atoms from water molecules showed that the electric field could enhance the hydration degree of Ca2+ under certain field length, hence preventing the chemical reaction with CO3 2- to produce crystal. In short, the scale inhibition effect under electrostatic field in Model-II was much better.
- Published
- 2020
- Full Text
- View/download PDF