1. Protein Microarray Chips
- Author
-
Klenkar, Goran and Klenkar, Goran
- Abstract
Livet tas för givet av de flesta. Det finns däremot många som ägnar stora delar av sitt liv för att försöka lösa dess mysterier. En del av lösningen ligger i att förstå hur alla molekyler är sammanlänkade i det gigantiska nätverk som definierar den levande organismen. Under det senaste seklet har en hel del forskning utförts för att kartlägga dessa nätverk. Resultatet av dessa mödor kan vi se i de läkemedel som vi har idag och som har utvecklats för att bota eller åtminstone lindra olika sjukdomar och tillstånd. Dessvärre finns det fortfarande många sjukdomar som är obotliga (t.ex. cancer) och mycket arbete krävs för att förstå dem till fullo och kunna designa framgångsrika behandlingar. Arbetet i denna avhandling beskriver en analytisk plattform som kan användas för att effektivisera kartläggningsprocessen; protein-mikroarrayer. Mikroarrayer är ytor som har mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster med möjligheten att studera många interaktioner mellan biologiska molekyler samtidigt. Detta medför snabbare och fler analyser - till en lägre kostnad. Protein-mikroarrayer har funnits i ungefär ett decennium och har följt i fotspåren av de framgångsrika DNA-mikroarrayerna. Man bedömer att protein-mikroarrayerna har en minst lika stor potential som DNA mikroarrayerna då det egentligen är mer relevant att studera proteiner, som är de funktionsreglerande molekylerna i en organism. Vi har i detta arbete tillverkat modellytor för stabil inbindning av proteiner, som lämnar dem intakta, funktionella och korrekt orienterade i ett mikroarray format. Därmed har vi adresserat ett stort problem med protein mikroarrays, nämligen att proteiner är känsliga molekyler och har i många fall svårt att överleva tillverkningsprocessen av mikroarrayerna. Vi har även studerat en metod att tillverka mikroarrayer av proteiner bundna till strukturer, som modellerats att efterlikna cellytor. Detta är särkilt viktigt eftersom många (hälften) av dagens (och säkerlig, Life is a thing taken for granted by most. However, it is the life-long quest of many to unravel the mysteries of it. Understanding and characterizing the incomprehensively complex molecular interaction networks within a biological organism, which defines that organism, is a vital prerequisite to understand life itself. Already, there has been a lot of research conducted and a large knowledge has been obtained about these pathways over, especially, the last century. We have seen the fruits of these labors in e.g. the development of medicines which have been able to cure or at least arrest many diseases and conditions. However, many diseases are still incurable (e.g. cancer) and a lot more work is still needed for understanding them fully and designing successful treatments. This work describes a generic analytical tool platform for aiding in more efficient (bio)molecular interaction mapping analyses; protein microarray chips. Microarray chips are surfaces with micrometer sized features with the possibility of studying the interactions of many (thousands to tens of thousands) (bio)molecules in parallel. This allows for a higher throughput of analyses to be performed at a reduced time and cost. Protein microarrays have been around for approximately a decade, following in the footsteps of the, so far, more successfully used DNA microarrays (developed in the 1990s). Microarrays of proteins are more difficult to produce because of the more complex nature of proteins as compared to DNA. In our work we have constructed model surfaces which allow for the stable, highly oriented, and functional immobilization of proteins in an array format. Our capture molecules are based on multivalent units of the chelator nitrilotriacetic acid (NTA), which is able to bind histidine-tagged proteins. Furthermore, we have explored an approach for studying lipid membrane bound systems, e.g. receptor-ligand interactions, in a parallelized, microarray format. The approach relies on the addressa
- Published
- 2007