1. Robust H2 control applied to boost converters: design, experimental validation and performance analysis.
- Author
-
Maccari Jr., L. A., Montagner, V. F., Pinheiro, H., and Oliveira, R. C. L. F.
- Subjects
ELECTRONIC feedback ,LINEAR matrix inequalities ,CASCADE converters ,ELECTRIC potential ,ELECTRIC vehicles ,MATHEMATICAL variables ,MATRICES (Mathematics) - Abstract
This study proposes a design procedure and experimental validation for a robust H2 state feedback controller applied to a DC-DC boost converter modelled as a linear system affected by time-varying parameters lying in known intervals. The parameters considered as time-varying are the input voltage, the load resistance and the operating point duty cycle. A polytopic representation of the system is derived and the controller is designed by means of a convex optimisation problem based on linear matrix inequalities. The conventional H2 controller is extended to cope with alpha-stability and robust linear quadratic regulator design, providing different strategies to trade-off the magnitude of the control gains and the response of the closed-loop system. Tight correspondences between numerical simulations and the experimental results prove the viability of the application of this technique for this kind of plant. Finally, a robust performance analysis illustrates the capacity of the closed-loop system to reject energy bounded disturbances, with interpretation for the cases of time-varying and time-invariant parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF