1. A car-seat example of automated anthropomorphic testing of fabrics using force-controlled robot motions
- Author
-
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica, Ministerio de Ciencia e Innovación, Valera Fernández, Ángel, Benimeli Andreu, Francisco Javier, Solaz Sanahuja, José Salvador, De Rosario Martínez, Helios, Robertsson, Anders, Nilsson ., Klass, Zotovic Stanisic, Ranko, Mellado Arteche, Martín, Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica, Ministerio de Ciencia e Innovación, Valera Fernández, Ángel, Benimeli Andreu, Francisco Javier, Solaz Sanahuja, José Salvador, De Rosario Martínez, Helios, Robertsson, Anders, Nilsson ., Klass, Zotovic Stanisic, Ranko, and Mellado Arteche, Martín
- Abstract
For the last years, automation is widely used to relieve humans from repetitive tasks, primarily and firstly within manufacturing. However, for products with less ideal (or hard to model) properties, and when forces depends on human interaction, automated testing has not been explored until now. This work presents the analysis of the (human-dependent) motions/forces based on a fully implemented test case for car-seat testing. For emulation of the corresponding mechanical wear, an experimental test bench was developed. A sensor mat with a pressure gauge net was used in the test bench to determine the relevant loads, and the corresponding movements performed by the humans when sitting in a car seat were acquired by means of a photogrammetry system. Finally, to automate the reproduction of such movements by means of a dummy held by a robot, several controllers have been developed to regulate the force applied by the dummy on the seat. Simplicity and force-control performance for the human replication was also investigated in this work, showing the benefit of freely programmable (open) force control. The developed system has many practical applications, as allowing the analysis of the wearing caused by these movements on the seat upholstery. Thus, force controlled testing of fabrics using robots is a viable option. © 2010 IEEE.
- Published
- 2011