Valdivia Uría, José Gabriel, Ibarra García, Manuel Ricardo, Fernández Pacheco, Rodrigo, Viloria, Américo, Higuera, Teresa, Laborda, Alicia, García, Angel, García de Jalón, José Antonio, Gutiérrez, Martín, Romero, Maria Soledad, Cornudella, Rosa, Arruebo, Manuel, Marquina, Clara, Arbiol, Jordi, and Santamaría, Jesús
Objetivo: El empleo de nanopartículas en el transporte de fármacos es actualmente uno de los temas de interés prioritario dentro del campo de la investigación biomédica. Nuestro objetivo es mostrar los resultados iniciales de un método inédito para focalizar en órganos sólidos nanopartículas ferro carbonosas quimioportadoras. Hemos obtenido y caracterizado diversos tipos de nanopartículas ferromagnéticas, y hemos estudiado su comportamiento in vitro e in vivo en animales de experimentación con dianas magnéticas intrarrenales implantadas laparoscópicamente. Método: Obtenemos mediante arco de plasma nanopartículas ferro carbonosas capaces de absorber y desorber doxorrubicina y mostrar excelente comportamiento en estudios reológicos in vitro. Bajo anestesia general insertamos mediante control laparoscópico en el riñón izquierdo de conejos de raza neozelandesa un microarpón magnético encapsulado en oro. En el mismo acto inyectamos por vía intravenosa diferentes dosis de distintos tipos de nanopartículas. Los diversos lotes de animales se sacrifican tras diferentes tiempos y se analizan histológicamente ambos riñones, bazo, hígado, pulmones y médula ósea. Resultados: Tras haber seleccionado las nanopartículas más adecuadas para nuestros fines, hemos constatado en los estudios post-mortem diferencias significativas en la distribución de las nanopartículas, con cúmulos de las mismas en la diana magnética y en el parénquima renal circundante. No obstante, el sistema retículoendotelial retiene gran parte de la carga inyectada. Conclusiones: Aunque nuestro sistema de focalización magnética resulta efectivo, deben ensayarse sistemas de blindaje temporal de las nanopartículas que les permita eludir la acción del sistema inmune. Objectives: The use of nanoparticules for drug transport is one of the topics with priority interest within the field of biomedical research. Our objective is to show the initial results of an innovative method to focalize drug carrier ferro-carbon nanoparticules to solid organs. We obtained and characterized various types of ferrous magnetic nanoparticules and studied their behaviour in vitro and in vivo in laboratory animals with intrarenal magnetic targets laparoscopically implanted. Methods: Using a plasma arch we obtained ferro-carbon nanoparticules with the ability to absorb and deliver doxorubicin, showing an excellent behaviour in in vitro rheological studies. Under general anesthesia and control we inserted a gold covered magnetic microharpoon in the left kidney of New Zealand rabbits. At the same time we injected intravenously different doses of various types of nanoparticules. The animals were sacrified after pre-established times and pathologic studies of their kidneys, spleens, livers, lungs and bone marrow were carried out. Results: After selection of the most adequate nanoparticules for our purposes, we ascertained significant differences in the distribution of nanoparticules in post-mortem studies, with accumulation in the magnetic target and surrounding renal parenchyma. Nevertheless, the reticuloendothelial system retains a great amount of the injected dose. Conclusions: Although our magnetic focalization system is effective, nanoparticule temporary protection systems should be tested to allow us avoid the action of the immune system.