1. Selective inhibition of BCL-2 is a promising target in patients with high-risk myelodysplastic syndromes and adverse mutational profile.
- Author
-
Reidel V, Kauschinger J, Hauch RT, Müller-Thomas C, Nadarajah N, Burgkart R, Schmidt B, Hempel D, Jacob A, Slotta-Huspenina J, Höckendorf U, Peschel C, Kern W, Haferlach T, Götze KS, Jilg S, and Jost PJ
- Abstract
Somatic mutations in genes such as ASXL1 , RUNX1 , TP53 or EZH2 adversely affect the outcome of patients with myelodysplastic syndromes (MDS). Since selective BCL-2 inhibition is a promising treatment strategy in hematologic malignancies, we tested the therapeutic impact of ABT-199 on MDS patient samples bearing an adverse mutational profile. By gene expression, we found that the level of pro-apoptotic BIM significantly decreased during MDS disease progression in line with an acquired resistance to cell death. Supporting the potential for ABT-199 treatment in MDS, high-risk MDS patient samples specifically underwent cell death in response to ABT-199 even when harbouring mutations in ASXL1 , RUNX1 , TP53 or EZH2 . ABT-199 effectively targeted the stem- and progenitor compartment in advanced MDS harbouring mutations in ASXL1 , RUNX1 , TP53 or EZH2 and even proved effective in patients harbouring more than one of the defined high-risk mutations. Moreover, we utilized the protein abundance of BCL-2 family members in primary patient samples using flow cytometry as a biomarker to predict ABT-199 treatment response. Our data demonstrate that ABT-199 effectively induces apoptosis in progenitors of high-risk MDS/sAML despite the presence of adverse genetic mutations supporting the notion that pro-apoptotic intervention will hold broad therapeutic potential in high-risk MDS patients with poor prognosis., Competing Interests: CONFLICTS OF INTEREST None.
- Published
- 2018
- Full Text
- View/download PDF