1. Borik Asit Katkılı Poliakrilonitril-ko-Vinil Asetat Polimerinden Elektroçekim Yöntemiyle Nanolifli Tekstil Yüzeylerinin Üretimi ve Termal Karakterizasyonu.
- Author
-
ÇETİN, Esra ARISAL and TİYEK, İsmail
- Subjects
- *
ENERGY dispersive X-ray spectroscopy , *FOURIER transform infrared spectroscopy , *BORIC acid , *DIFFERENTIAL scanning calorimetry , *FIRE testing - Abstract
In this study, it was aimed to investigate the effect of boric acid additive of thermal properties on nanofiber textile surfaces produced by doping different amounts of boric acid into polyacrylonitrile-co-vinyl acetate (P(AN-VAc)). For this purpose, nanofiber textile surfaces were produced from the boric acid doped and undoped P(AN-VAc) solutions prepared with a 10 % concentration in dimethylformamide by electrospinning method. Some analyzes and tests were carried out to determine the structural, morphological, physical, mechanical and thermal properties of the boric acid doped and undoped nanofiber textile surfaces produced. The presence of boric acid was detected on boric acid doped nanofiber surfaces produced as a result of Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX) analyses. The morphological properties of the produced surfaces were investigated by scanning electron microscopy (SEM) and it was observed that uniform nanofiber structure was formed in all samples. As a result of tensile strength tests, it was determined that the boric acid additive reduces values of tensile strength and elongation of nanofiber surfaces. The thermal properties of all the produced nanofiber textile surfaces were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and vertical flammability tests. As a result of the thermal analyses and tests, it was determined that the boric acid additives improve the thermal properties of the P(AN-VAc) nanofiber textile surfaces and the thermal resistances of them increases with the increase of the boric acid additive. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF