1. Transformer Based Traffic Flow Forecasting in SDN-VANET
- Author
-
Ali Abir Shuvro, Mohammad Shian Khan, Monzur Rahman, Faisal Hussain, Md. Moniruzzaman, and Md. Sakhawat Hossen
- Subjects
Vehicular ad-hoc network ,transformers ,sequence length ,encoders ,attention ,traffic flow ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Intelligent Transportation System (ITS) provides services for proper traffic assistance. ITS helps in creating a transportation system that is smart, safe and efficient. Vehicular Ad-hoc Network supplies internet connectivity to vehicles and helps in traffic guidance. This paper uses a modified transformer architecture for time-series vehicular data to predict traffic flow. Time-series sequences are generated from the dataset for capturing temporal dependencies. Our proposed transformer-based model has been engineered to capture inter-feature correlations along with inter-sample correlations. The 2D-Transformers model has a significant decrease in error compared with Transformers and LSTM-based models. The prediction generated from the model can be transmitted throughout a network of vehicles. So, a holistic networking model is proposed where the vehicles will be connected to Road-side Units (RSUs) and the backbone network will be Software Defined Network (SDN). The traditional design principles, that incorporate data, control and management planes together in a network device, are incapable to adapt with this much data growth, bandwidth, speed, security, and scalability compared to SDN as it provides with centralized programmable mechanism reliably. The trained parameters learned using the transformer model can be passed throughout the network for traffic guidance.
- Published
- 2023
- Full Text
- View/download PDF