Young-Gyu Kim, Woojin Yun, Asim Khan, Chong-Min Kyung, Wonseok Choi, Muhammad Umar Karim Khan, Pervaiz Kareem, Jinyeon Lim, Yeongmin Lee, Said Homidov, and Hyun Sang Park
Due to the increasing demand for 3D applications, development of novel depth-sensing cameras is being actively pursued. However, most of these cameras still face the challenge of high energy consumption and slow speed in the depth extraction process. This becomes a serious bottleneck in embedded implementations where real-time performance is required, constrained by power and area. This work proposes Offset Aperture (OA) camera, a new hardware architecture for fast, low-energy, and low-complexity depth extraction. Optimal implementations of pre-processing, cost-volume generation and cost-aggregation are presented. The whole depth-extraction pipeline has been implemented on a Field Programmable Gate Array (FPGA). Overall, a mere 2.8% of bad classification was achieved with the proposed system. Also, the proposed system can process 37 VGA frames per second while consuming 0.224 μJ/pixel. High accuracy, speed and low energy consumption of the proposed OA architecture make it suitable for embedded applications.