1. SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360° Images
- Author
-
Jongseob Yun, Wonjune Cho, Kuk-Jin Yoon, Jaeseok Jeong, and Yeonkun Lee
- Subjects
Euclidean space ,business.industry ,Computer science ,Deep learning ,020206 networking & telecommunications ,02 engineering and technology ,Convolutional neural network ,Image (mathematics) ,Convolution ,Distortion ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Segmentation ,Angular resolution ,Computer vision ,Artificial intelligence ,Representation (mathematics) ,business ,Spherical polyhedron - Abstract
Omni-directional cameras have many advantages overconventional cameras in that they have a much wider field-of-view (FOV). Accordingly, several approaches have beenproposed recently to apply convolutional neural networks(CNNs) to omni-directional images for various visual tasks.However, most of them use image representations defined inthe Euclidean space after transforming the omni-directionalviews originally formed in the non-Euclidean space. Thistransformation leads to shape distortion due to nonuniformspatial resolving power and the loss of continuity. Theseeffects make existing convolution kernels experience diffi-culties in extracting meaningful information. This paper presents a novel method to resolve such prob-lems of applying CNNs to omni-directional images. Theproposed method utilizes a spherical polyhedron to rep-resent omni-directional views. This method minimizes thevariance of the spatial resolving power on the sphere sur-face, and includes new convolution and pooling methodsfor the proposed representation. The proposed method canalso be adopted by any existing CNN-based methods. Thefeasibility of the proposed method is demonstrated throughclassification, detection, and semantic segmentation taskswith synthetic and real datasets.
- Published
- 2019