1. Preamble Arbitration Rule and Interference Suppression-Based Polling Medium Access Control for In-Vehicle Ultra-Wideband Networks
- Author
-
Makoto Okuhara, Nobuyuki Kurioka, Shigeki Mitoh, Patrick Finnerty, and Chikara Ohta
- Subjects
UWB ,IEEE 802.15.4 ,wireless in-vehicle networks ,interference prevention ,Transportation engineering ,TA1001-1280 ,Transportation and communications ,HE1-9990 - Abstract
This paper introduces a preamble arbitration rule and interference suppression (PARIS) method for ultra-wideband (UWB) in-vehicle networks. Advancements in the automotive technology have led to increased reliance on wire harnesses, resulting in higher costs, electronic integration challenges, and adverse environmental effects. To address these problems, we explored the use of UWB wireless networks, which are characterized by low transmission power and superior signal penetration capabilities. A significant challenge associated with implementing UWB in automotive environments is the increased frame error rate (FER) caused by UWB interference. Our experiments indicate that vehicles equipped with identical UWB networks exhibit an FER of approximately 6% when positioned closely. This level of FER is problematic for automotive applications, where reliable communication is paramount. To mitigate this problem, we developed an PARIS communication algorithm that is robust against interference. As identified in this study, PARIS leverages two key characteristics of UWB. First, it prioritizes the timing of signal reception over radio signal power, enhancing interference suppression by activating the receiver at the optimal moment before the desired frame arrives, thereby minimizing data loss. Second, the algorithm exploits the hierarchical nature of preamble codes in simultaneously received frames, reducing data loss rate to the order of $10^{-5}$ by prioritizing frames from critical communication devices based on the preamble code hierarchy. Implementing the UWB-based PARIS method in wireless vehicle networks can reduce the weight of the wire harnesses by approximately 20%, offering a promising solution to the challenges posed by traditional wiring systems.
- Published
- 2024
- Full Text
- View/download PDF