1. Y-Shaped Net-Based Signal Detection for OFDM-IM Systems.
- Author
-
Zhu, Yunan, Wang, Biao, Li, Jianghui, Zhang, Youwen, and Xie, Fangtong
- Abstract
This letter presents the power of deep learning for signal detection in orthogonal frequency division multiplexing with index modulation (OFDM-IM) systems. In this letter, we propose the Y-shaped net-based scheme with fully connected layers (Y-FC) and with bidirectional long short-term memory units (Y-BLSTM) to further optimize the data reception. In the Y-shaped scheme, the active indices and the constellation demapping are learned by two parallel sub-neural networks respectively, the output features are then concatenated and flattened to obtain binary bits. The performance is evaluated under various system parameters, such as modulation methods, number of hidden neural nodes and channel states. Simulation results show that compared with the data-driven signal detection with direct input-output, the proposed scheme achieves several dB of bit-error-rate performance improvement with almost the same running time. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF