Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient.