1. Industrial Requirements Classification for Redundancy and Inconsistency Detection in SEMIOS
- Author
-
Manel Mezghani, Florence Sèdes, Juyeon Kang, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Semios For Requirements (FRANCE), Semios For Requirements (Toulouse, France), Systèmes d’Informations Généralisées (IRIT-SIG), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Computer science ,Technical documents ,02 engineering and technology ,Inconsistency ,computer.software_genre ,NLP ,Clustering ,Redundancy ,Software ,Formal specification ,0202 electrical engineering, electronic engineering, information engineering ,Redundancy (engineering) ,Cluster analysis ,Traitement du texte et du document ,Requirements engineering ,business.industry ,k-means clustering ,020207 software engineering ,Technical documentation ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Systems analysis ,020201 artificial intelligence & image processing ,Data mining ,business ,computer - Abstract
International audience; Requirements are usually "hand-written" and suffers from several problems like redundancy and inconsistency. The problems of redundancy and inconsistency between requirements or sets of requirements impact negatively the success of final products. Manually processing these issues requires too much time and it is very costly. The main contribution of this paper is the use of k-means algorithm for a redundancy and inconsistency detection in a new context, which is Requirements Engineering context. Also, we introduce a filtering approach to eliminate "noisy" requirements and a preprocessing step based on the Natural Language Processing (NLP) technique to see the impact of this latter on the k-means results. We use Part-Of-Speech (POS) tagging and noun chunking to detect technical business terms associated to the requirements documents that we analyze. We experiment this approach on real industrial datasets. The results show the efficiency of the k-means clustering algorithm, especially with the filtering and preprocessing steps. Our approach is using the software SEMIOS and will be integrated as a new functionality.
- Published
- 2018