1. Lateral Ordering, Position, and Number Control of Self-Organized Quantum Dots: The Key to Future Functional Nanophotonic Devices.
- Author
-
Notzel, R., Sritirawisarn, N., Selcuk, E., and Anantathanasarn, S.
- Abstract
Lateral ordering, position, and number control of self-organized epitaxial semiconductor quantum dots (QDs) are demonstrated. Straight linear InAs QD arrays are formed by self- organized anisotropic strain engineering of an InGaAsP/InP (10 0) superlattice template in chemical beam epitaxy. The QD emission wavelength at room temperature is tuned into the important 1.55 mum telecom wavelength region through the insertion of ultrathin GaAs interlayers. Guided self-organized anisotropic strain engineering is demonstrated on shallow- and deep-patterned GaAs (3 1 1)B substrates by molecular beam epitaxy for the formation of complex InGaAs QD arrays. Lateral positioning and number control of InAs QDs, down to a single QD, are demonstrated on truncated InP (100) pyramids by selective-area metal-organic vapor phase epitaxy. Sharp emission around 1.55 mum is observed well above liquid nitrogen temperatures. The regrowth of a passive waveguide structure establishes submicrometer-scale active- passive integration. The demonstrated control over QD formation is the key to future functional nanophotonic devices and paves the way toward the ultimates of photonic-integrated circuits operating at the single and multiple electron and photon level with control of the quantum mechanical and electromagnetic interactions. [ABSTRACT FROM PUBLISHER]
- Published
- 2008
- Full Text
- View/download PDF