1. Adversarial Network-Based Classification for Alzheimer’s Disease Using Multimodal Brain Images: A Critical Analysis
- Author
-
Meenu Gupta, Rakesh Kumar, and Ajith Abraham
- Subjects
Alzheimer ,brain images ,convolutional neural network ,generative adversarial network ,machine learning ,magnetic resonance imaging ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents a significant and growing public health challenge. This work concisely summarizes AD, encompassing its pathophysiology, risk factors, clinical manifestations, diagnosis, treatment, and ongoing research. The main goal of managing AD is to reduce symptoms while improving the lives of those impacted. This letter has conducted a systematic review to analyze the prediction of AD using the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA) guidelines. The major scientific databases such as Scopus, Web of Science (WoS), and IEEE Xplorer are explored, where 2018–2023 publications are considered. The article selection process is based on keywords like “Alzheimer’s disease,” “Brain Images,” “Deep Learning (DL),” etc. After rigorous analysis, 946 articles were extracted, and 42 were identified for final consideration. Further, several investigations based on the previous work are discussed along with its Proposed Solutions (PS). Finally, a case study on AD detection using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and AD Detection Network (ADD-NET) implementation is presented.
- Published
- 2024
- Full Text
- View/download PDF