1. 10-Hydroxy Decanoic Acid and Zinc Oxide Nanoparticles Retrieve Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling in Lead-Induced Testicular Toxicity.
- Author
-
Maher AM, Elsanosy GA, Ghareeb DA, Elblehi SS, and Saleh SR
- Abstract
There has been a significant increase in human exposure to heavy metals (HMs) over the course of the previous century, primarily due to the extensive industrial processes. Male infertility is a prominent complication associated with lead exposure, wherein lead has the potential to accumulate within the testes, resulting in oxidative stress and inflammation. In addition, 10-hydroxydecanoic acid (10-HDA) is a component found in the secretions of worker bees and possesses the capacity to mitigate oxidative stress and prevent inflammation. Due to their advantageous properties, zinc oxide nanoparticles (ZnO-NPs) possess a wide range of applications in the field of biomedicine. This study aimed to assess the therapeutic effect of 10-HDA and ZnO-NPs on testicular toxicity in rats induced by lead acetate (PbAc). PbAc was administered orally for a period of 3 months. Following that, 10-HDA and/or ZnO-NPs were administrated for 1 month. PbAc deformed seminal analysis, decreased seminal fructose and sex hormonal levels, and resulted in the development of histopathological complications. Additionally, PbAc increased MDA and decreased Nrf2 and HO-1 expression, confirmed by the declined antioxidant defense system. Furthermore, an increase in testicular inflammatory markers and the Bax/Bcl-2 ratio was observed subsequent to the administration of PbAc. The administration of 10-HDA and ZnO-NPs demonstrated significant efficacy in the restoration of semen quality, pituitary/gonadal hormones, antioxidants, and testicular histoarchitecture. Moreover, 10-HDA and ZnO-NPs decreased testicular inflammatory markers and apoptotic proteins (caspase-3 and Bax expression levels). In conclusion, combining 10-HDA and ZnO-NPs demonstrated synergistic potential in treating PbAc-induced testicular toxicity, thereby presenting a promising approach in nanomedicine and natural drugs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF