1. Clinical Determination of Brain Death in Children Supported by Extracorporeal Membrane Oxygenation.
- Author
-
Harrar DB, Kukreti V, Dean NP, Berger JT 3rd, and Carpenter JL
- Subjects
- Adolescent, Aortic Valve Stenosis complications, Aortic Valve Stenosis therapy, Apnea, Brain Edema diagnostic imaging, Brain Edema etiology, Burns complications, Burns therapy, Cerebral Infarction diagnostic imaging, Cerebral Infarction etiology, Child, Child, Preschool, Female, Heart Arrest, Heart Defects, Congenital complications, Heart Defects, Congenital therapy, Humans, Hypoxia-Ischemia, Brain etiology, Infant, Male, Myocarditis complications, Myocarditis therapy, Pupil Disorders diagnosis, Pupil Disorders etiology, Retrospective Studies, Rocky Mountain Spotted Fever complications, Rocky Mountain Spotted Fever therapy, Shock, Septic complications, Shock, Septic therapy, Brain Death diagnosis, Extracorporeal Membrane Oxygenation methods, Hypercapnia, Hypoxia-Ischemia, Brain diagnostic imaging
- Abstract
Background/objective: Children supported by extracorporeal membrane oxygenation (ECMO) are at risk of catastrophic neurologic injury and brain death. Timely determination of brain death is important for minimizing psychological distress for families, resource allocation, and organ donation. Reports of successful determination of brain death in pediatric patients supported by ECMO are limited. The determination of brain death by clinical criteria requires apnea testing, which has historically been viewed as challenging in patients supported by ECMO. We report eight pediatric patients who underwent a total of 14 brain death examinations, including apnea testing, while supported by veno-arterial ECMO (VA-ECMO), resulting in six cases of clinical determination of brain death., Methods: We performed a retrospective review of the medical records of pediatric patients who underwent brain death examination while supported by VA-ECMO between 2010 and 2018 at a single tertiary care children's hospital., Results: Eight patients underwent brain death examination, including apnea testing, while supported by VA-ECMO. Six patients met criteria for brain death, while two had withdrawal of technical support after the first examination. During the majority of apnea tests (n = 13/14), the ECMO circuit was modified to achieve hypercarbia while maintaining oxygenation and hemodynamic stability. The sweep flow was decreased prior to apnea testing in ten brain death examinations, carbon dioxide was added to the circuit during three examinations, and ECMO pump flows were increased in response to hypotension during two examinations., Conclusions: Clinical determination of brain death, including apnea testing, can be performed in pediatric patients supported by ECMO. The ECMO circuit can be effectively modified during apnea testing to achieve a timely rise in carbon dioxide while maintaining oxygenation and hemodynamic stability.
- Published
- 2019
- Full Text
- View/download PDF