1. Using Multiple Ontologies to Integrate Complex Biological Data
- Author
-
Victoria Petri, Anne E. Kwitek, Howard J. Jacob, Wenhua Wu, Jiali Chen, Simon N. Twigger, Susan Bromberg, Mary Shimoyama, Dean Pasko, and Nataliya Nenasheva
- Subjects
Article Subject ,lcsh:QH426-470 ,ved/biology.organism_classification_rank.species ,Computational biology ,Ontology (information science) ,Biology ,Filter (higher-order function) ,Rat Genome Database ,Annotation ,Genetics ,lcsh:Science ,Model organism ,lcsh:QH301-705.5 ,Molecular Biology ,Biological data ,ved/biology ,business.industry ,Data structure ,lcsh:Genetics ,lcsh:Biology (General) ,lcsh:Q ,Artificial intelligence ,business ,Whole Organism ,Research Article ,Biotechnology - Abstract
The strength of the rat as a model organism lies in its utility in pharmacology, biochemistry and physiology research. Data resulting from such studies is difficult to represent in databases and the creation of user-friendly data mining tools has proved difficult. The Rat Genome Database has developed a comprehensive ontology-based data structure and annotation system to integrate physiological data along with environmental and experimental factors, as well as genetic and genomic information. RGD uses multiple ontologies to integrate complex biological information from the molecular level to the whole organism, and to develop data mining and presentation tools. This approach allows RGD to indicate not only the phenotypes seen in a strain but also the specific values under each diet and atmospheric condition, as well as gender differences. Harnessing the power of ontologies in this way allows the user to gather and filter data in a customized fashion, so that a researcher can retrieve all phenotype readings for which a high hypoxia is a factor. Utilizing the same data structure for expression data, pathways and biological processes, RGD will provide a comprehensive research platform which allows users to investigate the conditions under which biological processes are altered and to elucidate the mechanisms of disease.
- Published
- 2005
- Full Text
- View/download PDF