1. On the LQ Based Stabilization for a Class of Switched Dynamic Systems
- Author
-
Vadim Azhmyakov, Jean Jacques Loiseau, Michel Malabre, Moises Bonilla, M.A. Ortiz Castillo, Departamento de Control Automático (CINVESTAV-IPN), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Commande (Commande), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and EAFIT University
- Subjects
Lyapunov stability ,0209 industrial biotechnology ,Algebraic structure ,Computer science ,020208 electrical & electronic engineering ,Structure (category theory) ,02 engineering and technology ,State (functional analysis) ,Type (model theory) ,switched dynamic systems ,linear quadratic regulator (LQR) ,Algebraic Riccati equation ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,Riccati equation ,020901 industrial engineering & automation ,Control and Systems Engineering ,Control theory ,0202 electrical engineering, electronic engineering, information engineering ,implicit control systems ,Representation (mathematics) - Abstract
International audience; This paper deals with the stabilization of a class of time-dependent linear autonomous systems with a switched structure. For this aim, the switched dynamic system is modeled by means of an implicit representation combined with a Linear-Quadratic (LQ) type control design. The proposed control design stabilizes the resulting system for all of the possible realizations of its locations. In order to solve the Algebraic Riccati Equation (ARE) associated with the LQ control strategy one only needs the knowledge of the algebraic structure related to the switched system. We finally prove that the proposed optimal LQ type state feedback stabilizes the closed-loop switched system no matter which location is active. The proposed theoretical approaches are illustrated by a numerical example.
- Published
- 2020