1. Computation of eigenvalues and eigenfunctions in the solution of Eddy current problems
- Author
-
Theodoros Theodoulidis, Anastassios Skarlatos, Grzegorz Tytko, University of Western Macedonia [Kozani] (UoWM), Laboratoire de Simulation, Modélisation et Analyse (LSMA-LIST), Département d'instrumentation Numérique (DIN (CEA-LIST)), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Silesian University of Technology
- Subjects
Electrical and Electronic Engineering ,Biochemistry ,Instrumentation ,Atomic and Molecular Physics, and Optics ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analytical Chemistry ,nondestructive testing ,eddy current testing ,eigenvalues and eigenfunctions ,complex roots - Abstract
International audience; The solution of the eigenvalue problem in bounded domains with planar and cylindrical stratification is a necessary preliminary task for the construction of modal solutions to canonical problems with discontinuities. The computation of the complex eigenvalue spectrum must be very accurate since losing or misplacing one of the thereto linked modes will have an important impact on the field solution. The approach followed in a number of previous works is to construct the corresponding transcendental equation and locate its roots in the complex plane using the Newton–Raphson method or Cauchy-integral-based techniques. Nevertheless, this approach is cumbersome, and its numerical stability decreases dramatically with the number of layers. An alternative, approach consists in the numerical evaluation of the matrix eigenvalues for the weak formulation for the respective 1D Sturm–Liouville problem using linear algebra tools. An arbitrary number of layers can thus be easily and robustly treated, with continuous material gradients being a limiting case. Although this approach is often used in high frequency studies involving wave propagation, this is the first time that has been used for the induction problem arising in an eddy current inspection situation. The developed method is implemented in Matlab and is used to deal with the following problems: magnetic material with a hole, a magnetic cylinder, and a magnetic ring. In all the conducted tests, the results are obtained in a very short time, without missing a single eigenvalue.
- Published
- 2023