1. Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation
- Author
-
Chaitanya Deo, R. Ngayam-Happy, Michel Freyss, Robin W. Grimes, Alain Chartier, Paul C. M. Fossati, Guillaume Martin, Sergii Nichenko, Michael J.D. Rushton, Samuel T. Murphy, Matthias Krack, Philippe Garcia, Boris Dorado, Carole Valot, Laurent Van Brutzel, Richard Skorek, Eugen Yakub, Serge Maillard, Clare L. Bishop, Rakesh K. Behera, Marjorie Bertolus, Fabien Devynck, Kevin Govers, Kiet Hoang, D. Staicu, David Parfitt, Département d'Etudes des Combustibles (DEC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre for Advanced Structural Ceramics, Department of Materials, Imperial College, London, UK, European Commission - Joint Research Centre [Karlsruhe] (JRC), Paul Scherrer Institute, Villigen, Belgian Nuclear Research Center, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology [Atlanta], European Project: 211690,EC:FP7:Fission,FP7-Fission-2007,F-BRIDGE(2008), and Imperial College London
- Subjects
Nuclear and High Energy Physics ,Mesoscopic physics ,Nuclear fission product ,Scale (ratio) ,Uranium dioxide ,7. Clean energy ,Atomic units ,Nuclear physics ,chemistry.chemical_compound ,Nuclear Energy and Engineering ,chemistry ,13. Climate action ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Uranium oxide ,General Materials Science ,Kinetic Monte Carlo ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Scale model - Abstract
International audience; This article presents a synthesis of the investigations at the atomic scale of the transport properties of defects and fission gases in uranium dioxide, as well as of the transfer of results from the atomic scale to models at the mesoscopic scale, performed during the F-BRIDGE European project (2008-2012). We first present the mesoscale models used to investigate uranium oxide fuel under irradiation, and in particular the cluster dynamics and kinetic Monte Carlo methods employed to model the behaviour of defects and fission gases in UO$_2$ , as well as the parameters of these models. Second, we describe briefly the atomic scale methods employed, i.e. electronic structure calculations and empirical potential methods. Then, we show the results of the calculation of the data necessary for the mesoscale models using these atomic scale methods. Finally, we summarise the links built between the atomic and mesoscopic scale by listing the data calculated at the atomic scale which are to be used as input in mesoscale modelling. Despite specific difficulties in the description of fuel materials, the results obtained in F-BRIDGE show that atomic scale modelling methods are now mature enough to obtain precise data to feed higher scale models and help interpret experiments on nuclear fuels. These methods bring valuable insight, in particular the formation, binding and migration energies of point and extended defects, fission product local-ization, incorporation energies and migration pathways, elementary mechanisms of irradiation induced processes. These studies open the way for the investigation of other significant phenomena involved in fuel behaviour, in particular the thermochemical and thermomechanical properties and their evolution in-pile, complex microstructures, as well as of more complex fuels.
- Published
- 2015