1. Validation of ray-based cross-beam energy transfer models
- Author
-
R. K. Follett, A. Colaïtis, D. Turnbull, D. H. Froula, J. P. Palastro, Laboratory for lasers energetics - LLE (New-York, USA), University of Rochester [USA], Centre d'Etudes Lasers Intenses et Applications (CELIA), and Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Condensed Matter Physics - Abstract
International audience; Ray-based cross-beam energy transfer (CBET) models have become a common feature of the radiation-hydrodynamic codes used to simulate inertial confinement fusion experiments. These models are necessary for achieving better agreement with experimental measurements, but their detailed implementation can vary widely between the codes and often rely on artificial multipliers. To address this, a series of 2D and 3D test cases has been developed with validated solutions from wave-based calculations. Comparisons of various ray-based CBET models to the wave-based calculations highlight the essential physics that is required for accurate ray-based CBET modeling. Quantitative comparison metrics and/or field data from the wave-based calculations have been made available for use in the validation of other ray-based CBET codes.
- Published
- 2022