1. Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
- Author
-
C.-C. Lu, F. Schüssler, Felix Spanier, M. V. Fernandes, Gilles Henri, Jacco Vink, M. Mayer, F. Krayzel, M. Ostrowski, Sabrina Casanova, N. Chakraborty, E. Birsin, Thomas Tavernier, Werner Hofmann, Peter Eger, C. van Eldik, M. de Naurois, Mateusz Janiak, Ruizhi Yang, Guillaume Dubus, A. Marcowith, P. Espigat, Nu. Komin, Michael Punch, S. Häffner, Rachel Simoni, Helen Poon, A. Lopatin, N. Zywucka, F. Stinzing, B. Giebels, Tanya Edwards, Marek Jamrozy, M. Zacharia, Isak Delberth Davids, Daniel Kerszberg, A. Fiasson, G. Pelletier, K. Dutson, F. Spies, S. J. Wagner, P. Willmann, S. Rosier-Lees, M. Mohamed, Michal Dyrda, T. Vuillaume, Jacek Niemiec, Stefan Ohm, S. Pita, I. Jung-Richardt, M. Lemoine-Goumard, Helene Sol, Olaf Reimer, S. Bernhard, C. Mariaud, M. Kieffer, B. van Soelen, P. Wagner, F. Ait Benkhali, T. Bulik, B. Rudak, K. Stycz, Reinhard Schlickeiser, Yuzhu Cui, S. Schwemmer, Stefano Gabici, B. Degrange, Andrea Santangelo, Christoph Deil, J. Hawkes, V. Marandon, Frank M. Rieger, J. F. Glicenstein, A. Wörnlein, Victor Zabalza, Thomas Murach, U. Menzler, M. Füßling, André Schulz, Jim Hinton, R. Chalme-Calvet, C. Romoli, S. J. Fegan, A. Djannati-Ataï, Markus Holler, Arti Goyal, Michael Backes, Regis Terrier, Felix Jankowsky, J.-P. Lenain, J. Dyks, Joachim Hahn, A. Ivascenko, G. Spengler, Francois Brun, M. Chrétien, V. Lefranc, Olivier Hervet, Denis Wouters, Dieter Horns, R. J. Tuffs, H. Prokoph, Clemens Hoischen, A. A. Zdziarski, C. B. Rulten, Öttl, G. Heinzelmann, D. Fernandez, K. Kosack, F. Voisin, Konrad Bernlöhr, D. Berge, G. Lamanna, Yvonne Becherini, K. Egberts, Petter Hofverberg, Felix Aharonian, R. D. Parsons, G. Pühlhofer, S. Colafrancesco, Pierre Brun, Jan Conrad, J. Bolmont, M. A. Kastendieck, D.A. Prokhorov, J.L. Van der Walt, I. Sushch, C. Couturier, D. Klochkov, Andrew M. Taylor, C. Farnier, Andreas Hillert, J. Becker Tjus, J. Jeffrey Carr, W. Domainko, Gerard Fontaine, Ignasi Reichardt, R. Blackwell, F. Feinstein, J. Bregeon, M. Paz Arribas, Gianluca Giavitto, M. Gajdus, A. Reimer, H. Laffon, Alison Mitchell, Markus Böttcher, Alicja Wierzcholska, T. Garrigoux, K. Valerius, Daniela Hadasch, B. Khélifi, G. Hermann, P.-O. Petrucci, M. Grudzińska, Jean-Pierre Ernenwein, R. C. G. Chaves, E. O. Angüner, L. O'c. Drury, F. Zefi, H. Odaka, N. W. Pekeur, Johannes Veh, A. Balzer, D. Kolitzus, P. deWilt, Lukasz Stawarz, A. Förster, G. Vasileiadis, S. Raab, A. G. Akhperjanian, A. Abramowski, S. Klepser, Aion Viana, Ramin Marx, J.-P. Tavernet, M. Panter, U. Katz, U. Schwanke, M. Tluczykont, B. Opitz, N. Maxted, K. Moraa, S. Krakau, L. B. Oakes, Y. A. Gallant, Christo Venter, Christian Stegmann, Andreas Quirrenbach, V. Sahakian, P.P. Krüger, Riaan Steenkamp, Misao Sasaki, M. Lorentz, R. Moderski, A. Zech, Axel Donath, A. W. Chen, Pascal Vincent, David Sánchez, M.-H. Grondin, J. Lau, Julien Lefaucheur, A. S. Seyffert, J. Chevalier, Krzysztof Katarzynski, C. Boisson, D. Gottschall, Anne Lemiere, C. Trichard, David Salek, E. Moulin, R. Lui, P. J. Meintjes, Matthias Weidinger, B. Condon, A. Jacholkowska, Manuel Meyer, Robert Wagner, B. Peyaud, R. White, Thomas Lohse, W. Kluzniak, Gavin Rowell, M. Bryan, D. Zaborov, R. de los Reyes, Gilles Maurin, G. Cologna, Heinrich J. Völk, M. Renaud, P. Bordas, Igor Oya, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, HESS, 24420530 - Böttcher, Markus, 13146629 - Davids, Isak Delberth, 24790052 - Ivascenko, Alex, 11749903 - Krüger, Petrus Paulus, 22050574 - Pekeur, Nicolette Whilna, 20126999 - Seyffert, Albertus Stefanus, 25161814 - Spanier, Felix Alexander, 24922986 - Sushch, Iurii, 10060499 - Van der Walt, Diederick Johannes, 12006653 - Venter, Christo, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), and ATLAS (IHEF, IoP, FNWI)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Type (model theory) ,Kinetic energy ,01 natural sciences ,cosmic rays ,0103 physical sciences ,ddc:530 ,Sensitivity (control systems) ,010306 general physics ,Supernova remnant ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Spectral index ,supernova remnants [ISM] ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,Supernova ,Space and Planetary Science ,astroparticle physics ,ddc:520 ,Spectral energy distribution ,Production (computer science) ,general [gamma rays] - Abstract
Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission.Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5–1 keV X-ray band, the 2–5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models.Results. We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2–5 keV X-ray data reveals a correlation with the 0.4–50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ~0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ∼7 × 1049/ncm−3 has been transferred into high-energy protons with the effective density ncm−3 = n/1 cm−3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm−3.
- Published
- 2018